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Abstract

We introduce an R package named picasso, which implements a unified framework of
pathwise coordinate optimization for a variety of sparse learning problems (Sparse Linear Re-
gression, Sparse Logistic Regression and Sparse Poisson Regression), combined with efficient
active set selection strategies. Besides, the package allows users to choose different sparsity-
inducing regularizers, including the convex `1, nonvoncex MCP and SCAD regularizers. The
package is coded in C and can scale up to large problems efficiently with the memory optimized
using sparse matrix output.

1 Introduction

The pathwise coordinate optimization combined is undoubtedly one the of the most popular
solvers for a large variety of sparse learning problems. It takes advantage of the solution sparsity
through a simple but elegant algorithmic structure, and significantly boosts the computational
performance in practice(Friedman et al., 2007). Some recent advances in (Zhao et al., 2014; Ge
et al., 2016) establishes theoretical guarantees to further justify its computational and statistical
superiority for both convex and nonvoncex sparse learning, which makes it even more attractive
to practitioners.

Here we introduce an R package called picasso, which implements a unified toolkit of path-
wise coordinate optimization for a large class of convex and nonconvex regularized sparse learn-
ing approaches. Efficient active set selection strategies are provided to guarantee superior statis-
tical and computational preference. Specifically, we implement sparse linear regression, sparse
logistic regression, and sparse Poisson regression (Tibshirani, 1996). The options for regularizers
include the `1, MCP, and SCAD regularizers (Fan and Li, 2001; Zhang, 2010). Unlike existing
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Figure 1: The pathwise coordinate optimization framework with 3 nested loops : (1) Warm start
initialization; (2) Active set updating and strong rule for coordinate preselection; (3) Active coor-
dinate minimization.

packages implementing heuristic optimization algorithms such as ncvreg, our implemented al-
gorithm picasso have strong theoretical guarantees that it attains a global linear convergence to
a unique sparse local optimum with optimal statistical properties (e.g. minimax optimality and
oracle properties). See more technical details in Zhao et al. (2014); Ge et al. (2016).

2 Algorithm Design and Implementation

The algorithm implemented in picasso is mostly based on the generic pathwise coordinate opti-
mization framework proposed by Zhao et al. (2014); Ge et al. (2016), which integrates the warm
start initialization, active set updating strategy, and strong rule for coordinate preselection into
the classical coordinate optimization. The algorithm contains three structurally nested loops as
shown in Figure 1:

(1) Outer loop: The warm start initialization, also referred to as the pathwise optimization
scheme, is applied to minimize the objective function in a multistage manner using a se-
quence of decreasing regularization parameters, which yields a sequence of solutions from
sparse to dense. At each stage, the algorithm uses the solution from the previous stage as
initialization.

(2) Middle loop: The algorithm first divides all coordinates into active ones (active set) and inac-
tive ones (inactive set) by a so-called strong rule based on coordinate gradient thresholding
(Tibshirani et al., 2012). Then the algorithm calls an inner loop to optimize the objective,
and update the active set based on efficient active set updating strategies. Such a routine is
repeated until the active set no longer changes
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(3) Inner loop: The algorithm conducts coordinate optimization (for sparse linear regression) or
proximal Newton optimization combined with coordinate optimization (for sparse logistic
regression and Possion regression) only over active coordinates until convergence, with all
inactive coordinates staying zero values. The active coordinates are updated efficiently using
an efficient “naive update” rule that only operates on the non-zero coefficients. Further
efficiencies are achieved using the “covariance update” rule. See more details in (Friedman
et al., 2010). The inner loop terminates when the successive descent is within a predefined
numerical precision.

The warm start initialization, active set updating strategies, and strong rule for coordinate
preselection significantly boost the computational performance, making pathwise coordinate op-
timization one of the most important computational frameworks for sparse learning. The package
is implemented in C with the memory optimized using sparse matrix output, and called from R by
a user-friendly interface. The numerical evaluations show that picasso is efficient and can scale
to large problems.

3 Examples of User Interface

We illustrate the user interface by analyzing the eye disease data set in picasso.

> # Load the data set

> library(picasso); data(eyedata)

> # Lasso

> out1 = picasso(x,y,method="l1",opt="naive",nlambda=20,

+ lambda.min.ratio=0.2)

> # MCP regularization

> out2 = picasso(x,y,method="mcp", gamma = 1.25, prec=1e-4)

> # Plot solution paths

> plot(out1); plot(out2)

The program automatically generates a sequence of regularization parameters and estimate the
corresponding solution paths based on the `1 and MCP regularizers respectively. For the `1 reg-
ularizer, the number of regularization parameters as 20, and the minimum regularization pa-
rameter as 0.2*lambda.max. Here lambda.max is the smallest regularization parameter yield-
ing an all zero solution (automatically calculated by the package). For the MCP regularizer, we
set the concavity parameter as γ = 1.25, and the pre-defined accuracy as 10−4. Here nlambda

and lambda.min.ratio are omitted, and therefore set by the default values (nlambda=100 and
lambda.min.ratio=0.01). We further plot two solution paths in Figure 3.
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4 Numerical Simulation

To demonstrate the superior efficiency of our package, we compare picasso with a popular R

package ncvreg for nonconvex regularized sparse regression, and with the most popular R pack-
age glmnet for convex regularized sparse regression. All experiments are evaluated on a PC with
Intel Core i5 3.2GHz processor. Timings of the CPU execution are recored in seconds and aver-
aged over 100 replications on a sequence of 100 regularization parameters with approximately
the same estimation errors and sparsities. The convergence threshold are chosen to be 10−7 for all
experiments.

We first compare the timing performance and the statistical performance for sparse linear re-
gression under well-conditioned scenarios. We choose the (n,d) pairs as (500,5000) and (1000,10000)
respectively, where n is the number of observation in the response vector y ∈ Rn and d is the di-
mension of the parameter vector θ ∈Rd . We also set opt="naive". For the design matrixX ∈Rn×d ,
we generate each row independently from a d-dimensional normal distribution N (0,Σ), where
Σij = 0.5 for i , j and Σii = 1. Then we have y = Xθ +ε, where θ has all 0 entries except randomly
selected 1% entries have independent N (0,25) entries and ε ∈Rn has independent N (0,1) entries.
From the summary in Table 1, we see that while achieving almost identical optimal estimation
errors ‖θ − θ̂‖2, picasso is as fast as glmnet, both of which uniformly outperform ncvreg under
all settings with approximately 50 ∼ 100 times speedups.

We then compare the timing performance and the statistical performance for sparse linear re-
gression under ill-conditioned scenarios. We choose the (n,d) pairs, the generations of X, θ and ε

identical to the settings above, except that Σij = 0.75 for i , j. Due to a larger value is chosen for
Σij for i , j, the problems considered here are much more challenging than the problems in the
well-conditioned scenarios. We see from Table 1 that picasso not only outperforms ncvreg uni-
formly with approximately 50 ∼ 100 times speedups as in the well-conditioned setting, but also
outperforms glmnet with approximately 2 times speedups for `1 norm regularized method. This
is the most efficient R function for the sparse linear regression so far to the best of our knowledge.
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Table 1: Average timing performance (in seconds) and optimal estimation errors with standard
errors in the parentheses on sparse linear regression.

Sparse Linear Regression (Well-Conditioned)

Method Package
n = 500,d = 5000 n = 1000,d = 10000

Time Est. Err. Time Est. Err.

`1 norm
picasso 0.2647(0.0092) 0.3454(0.0594) 1.0746(0.0715) 0.2549(0.0405)

glmnet 0.2799(0.0105) 0.3481(0.0600) 1.0776(0.0638) 0.2563(0.0408)

ncvreg 20.698(1.9521) 0.3479(0.0600) 97.540(7.0725) 0.2555(0.0405)

MCP
picasso 0.2546(0.0084) 0.0743(0.0376) 1.0085(0.0696) 0.0444(0.0235)

ncvreg 5.4379(0.7299) 0.0747(0.0370) 45.262(2.5917) 0.0445(0.0222)

SCAD
picasso 0.2526(0.0088) 0.0786(0.0357) 1.0072(0.0654) 0.0471(0.0229)

ncvreg 17.865(1.0678) 0.0880(0.0374) 89.713(9.8081) 0.0522(0.0255)

Sparse Linear Regression (Ill-Conditioned)

`1 norm
picasso 0.2985(0.0205) 1.5168(0.2103) 1.1905(0.0374) 1.4641(0.0737)

glmnet 0.5055(0.1411) 1.5152(0.1992) 2.2316(0.2811) 1.4737(0.0631)

ncvreg 26.171(2.1503) 1.5048(0.1739) 85.140(5.9043) 1.4622(0.0520)

MCP
picasso 0.4614(0.0296) 0.5089(0.0770) 2.1639(0.0820) 0.5367(0.0742)

ncvreg 20.897(2.8878) 0.5168(0.0819) 111.78(12.255) 0.5345(0.0731)

SCAD
picasso 0.4825(0.0622) 0.5117(0.0673) 2.4075(0.2736) 0.5362(0.0766)

ncvreg 53.025(3.4142) 0.5070(0.0700) 193.63(15.992) 0.5359(0.0712)

We also compare the timing performance for sparse logistic regression. The choices of (n,d)
pairs are (500,2000), (1000,2000), (500,5000) and (1000,5000). The generations ofX and θ follow
from the settings for sparse linear regression under well-conditioned scenarios. Then the response

vector y has independent Bernoulli
(

exp(X>i∗θ)
1+exp(X>i∗θ)

)
entries. We see from Table 2 that picasso outper-

forms ncvreg under all settings, and scales better for increasing values of n and d.
Here we make a final comment that picasso performs stably for various choices of n,d and

tuning parameters compared with ncvreg. Especially when the tuning parameters are relatively
small (corresponding to denser estimators), ncvreg may converge very slow or fail to converge,
which we did not show here. To avoid such scenario, we choose the sequence of tunning param-
eters under the criteria that ncvreg attains the optimal performance in terms of the parameter
estimation, while the estimators are not too dense so that it fails to converge.
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Table 2: Average timing performance (in seconds) with standard errors in the parentheses on
sparse logistic regression.

Sparse Logistic Regression (Timing Performance)

Method Package
d = 2000 d = 5000

n = 500 n = 1000 n = 500 n = 1000

`1 norm
picasso 0.3339(0.0466) 0.5705(0.0121) 0.6135(0.1195) 1.1130(0.0281)

glmnet 0.2765(0.0212) 0.7116(0.0579) 0.4495(0.0318) 1.0922(0.1404)

ncvreg 42.970(8.8731) 187.15(25.265) 75.181(12.831) 316.47(46.937)

MCP
picasso 0.8110(0.0268) 1.3986(0.0565) 1.6125(0.0678) 3.1815(0.2510)

ncvreg 1.8135(0.7233) 7.5910(0.5854) 3.1759(0.4533) 9.3205(0.4815)

SCAD
picasso 0.8241(0.0141) 1.6325(0.0728) 1.9053( 0.0749) 3.0137(0.3252)

ncvreg 2.5635(0.1225) 11.558(1.5506) 4.9186(0.6390) 21.932(1.4928)

Sparse Logistic Regression (Estimation Error)

`1 norm
picasso 0.7661(0.0842) 1.1498(0.1014) 1.8152(0.0942) 1.1930(0.0281)

glmnet 0.7607(0.0757) 1.1461(0.1003) 1.8133(0.0991) 1.1886(0.0245)

ncvreg 0.7591(0.0736) 1.1574(0.1051) 1.7914(0.1023) 1.1985(0.0204)

MCP
picasso 0.1062(0.0244) 0.2145(0.0249) 0.6469(0.0343) 0.1524(0.0060)

ncvreg 0.0944(0.1335) 0.2120(0.0350) 0.6546(0.0596) 0.1487(0.0128)

SCAD
picasso 0.1173(0.0225) 0.2129(0.0104) 0.7062(0.1048) 0.1624(0.0060)

ncvreg 0.1189(0.0182) 0.2154(0.0193) 0.7117(0.0957) 0.1516(0.0154)

5 Conclusion

The picasso package demonstrates significantly improved computational and statistical perfor-
mance over existing packages such as ncvreg for nonconvex regularized sparse learning. Besides,
picasso also shows improvement over the popular packages such as glmnet for sparse linear re-
gression under ill-conditioned settings. Moreover, the algorithm implemented in picasso, which
guarantees a global linear convergence to a unique sparse local optimum with optimal statistical
properties. Overall, the picasso package has the potential to serve as a powerful toolbox for high
dimensional sparse learning. We will continue to maintain and support this package.
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