Symmetry, Saddle Points, and Global Geometry of Nonconvex Matrix Factorization

Xingguo Li

Joint work with Z. Wang, J. Lu, R. Arora, J. Haupt, H. Liu, and T. Zhao

Overview •O	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgrou	nd		

Consider a low-rank matrix estimation problem:

```
\min_{M} f(M) \quad \text{subject to } rank(M) \leq r,
```

where $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is convex and smooth

• Fit Wide class of problems; NP-hard in general

Overview •o	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgrou	nd		

Consider a low-rank matrix estimation problem:

```
\min_{M} f(M) \quad \text{subject to } \operatorname{rank}(M) \leq r,
```

where $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is convex and smooth

• Fit Wide class of problems; NP-hard in general

→ Convex relaxation:

```
\min_{M} f(M) \quad \text{subject to } ||M||_* \leq \tau,
```

• Easy to analyze; Computationally Expensive, e.g., SVD

Overview ●0	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgro	und		

Consider a low-rank matrix estimation problem:

```
\min_{M} f(M) \quad \text{subject to } \operatorname{rank}(M) \leq r,
```

where $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is convex and smooth

- Fit Wide class of problems; NP-hard in general
- → Convex relaxation:

$$\min_{M} f(M) \quad \text{subject to } ||M||_* \leq \tau,$$

• Easy to analyze; Computationally Expensive, e.g., SVD

→ Nonconvex formulation:

$$\min_{X\in\mathbb{R}^{n\times r},Y\in\mathbb{R}^{m\times r}}f(XY^{\top}),$$

• Good empirical performance; Challenging for analysis

Overview ⊙●	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgrou	ınd		

Challenges in $\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} f(XY^{\top})$:

- Infinitely many nonisolated saddle points Example: (X, Y) is a saddle $\rightarrow (X\Phi, Y\Phi)$ is also a saddle $\forall \Phi$
- Nonconvex on X, Y, even $f(\cdot)$ is convex

Overview ⊙●	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgro	und		

Challenges in $\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} f(XY^{\top})$:

- Infinitely many nonisolated saddle points Example: (X, Y) is a saddle $\rightarrow (X\Phi, Y\Phi)$ is also a saddle $\forall \Phi$
- Nonconvex on X, Y, even $f(\cdot)$ is convex

Existing approach:

- Generalization of convexity: Local regularity condition (Candes et al., 2015)
- Geometric characterization: Local properties vs. Global properties

(Ge et al., 2016; Sun et al., 2016)

Overview ⊙●	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Backgrou	ınd		

Challenges in $\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} f(XY^{\top})$:

- Infinitely many nonisolated saddle points Example: (X, Y) is a saddle $\rightarrow (X\Phi, Y\Phi)$ is also a saddle $\forall \Phi$
- Nonconvex on X, Y, even $f(\cdot)$ is convex

Existing approach:

- Generalization of convexity: Local regularity condition (Candes et al., 2015)
- Geometric characterization: Local properties vs. Global properties (Ge et al., 2016; Sun et al., 2016)

Our approach:

- A novel theory characterizing stationary points
- A full geometric characterization of low-rank matrix factorization
- An extension to constrained problems

Different Types of Stationary Points

Definition

Given a smooth function $f : \mathbb{R}^n \to \mathbb{R}$, a point $x \in \mathbb{R}^n$ is called:

- (i) a stationary point, if $\nabla f(x) = 0$;
- (ii) a local minimum, if x is a stationary and \exists a neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x such that $f(x) \leq f(y)$ for any $y \in \mathcal{B}$;
- (iii) a global minimum, if x is a stationary and $f(x) \leq f(y)$, $\forall y \in \mathbb{R}^n$;
- (iv) a strict saddle point, if x is a stationary and \forall neighborhood $\mathcal{B} \subseteq \mathbb{R}^n$ of x, $\exists y, z \in \mathcal{B}$ s.t. $f(z) \leq f(x) \leq f(y) \& \lambda_{\min}(\nabla^2 f(x)) < 0$.

A Generic Theory for Stationary Points

• Invariant group \mathcal{G} of f: A subgroup of a special linear group, if f(x) = f(g(x)) for all $x \in \mathbb{R}^m$ and $g \in \mathcal{G}$.

• Fixed point $x_{\mathcal{G}}$ of a group \mathcal{G} : if $g(x_{\mathcal{G}}) = x_{\mathcal{G}}$ for all $g \in \mathcal{G}$.

Theorem (Stationary Fixed Point)

Suppose f has an invariant group G and G has a fixed point x_G . If we have

$$\mathcal{G}(\mathbb{R}^m) \stackrel{ riangle}{=} \operatorname{Span}\{g(x) - x \mid g \in \mathcal{G}, x \in \mathbb{R}^m\} = \mathbb{R}^m,$$

then $x_{\mathcal{G}}$ is a stationary point of f.

A Generic Theory for Stationary Points

• Invariant group \mathcal{G} of f: A subgroup of a special linear group, if f(x) = f(g(x)) for all $x \in \mathbb{R}^m$ and $g \in \mathcal{G}$.

• Fixed point $x_{\mathcal{G}}$ of a group \mathcal{G} : if $g(x_{\mathcal{G}}) = x_{\mathcal{G}}$ for all $g \in \mathcal{G}$.

Theorem (Stationary Fixed Point)

Suppose f has an invariant group ${\cal G}$ and ${\cal G}$ has a fixed point $x_{{\cal G}}.$ If we have

$$\mathcal{G}(\mathbb{R}^m) \stackrel{ riangle}{=} \operatorname{Span}\{g(x) - x \mid g \in \mathcal{G}, x \in \mathbb{R}^m\} = \mathbb{R}^m,$$

then $x_{\mathcal{G}}$ is a stationary point of f.

Corollary

If
$$y_{\mathcal{G}_{\mathcal{Y}}}$$
 is a fixed point of $\mathcal{G}_{\mathcal{Y}}$, an induced subgroup of \mathcal{G} , and
 $z^*(y_{\mathcal{G}_{\mathcal{Y}}}) \in \arg \operatorname{zero}_z \nabla_z f(y_{\mathcal{G}_{\mathcal{Y}}} \oplus z),$

then $g(y_{\mathcal{G}_{\mathcal{Y}}} \oplus z^*)$ is a stationary point for all $g \in \mathcal{G}$.

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Examples			

→ Low-rank Matrix Factorization:

 $\min_X f(X) = \frac{1}{4} \|XX^\top - M^*\|_{\mathsf{F}}^2$, where $M^* = UU^\top$

• Invariant group: $\mathfrak{O}_r = \{ \Psi \in \mathbb{R}^{r \times r} \mid \Psi \Psi^\top = \Psi^\top \Psi = I_r \}$; Fixed point:0

•
$$\mathcal{Y} = \mathcal{L}_{U_{r-s}} \subseteq \mathcal{L}_U$$
 and $\mathcal{Z} = \mathcal{L}_{U_s} \subseteq \mathcal{L}_U$

 $\Rightarrow U_s \Psi_r$ is stationary, where $\Psi_r \in \mathfrak{O}_r$, $U_s = \Phi \Sigma S \Theta^\top$, $U = \Phi \Sigma \Theta^\top$ (SVD), and S is a diagonal matrix w/s entries 1 and 0 o.w. $\forall s \in [r]$

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization				
Example	Examples						
→ Low-	rank Matrix Factoriz in $f(X) = \frac{1}{2} \ XX^{\top}$	Tation: $- M^{*\parallel 2}$ where $M^* - I \Pi I^{\top}$					

• Invariant group: $\mathfrak{O}_r = \{ \Psi \in \mathbb{R}^{r \times r} \mid \Psi \Psi^\top = \Psi^\top \Psi = I_r \}$; Fixed point:0

- $\mathcal{Y} = \mathcal{L}_{U_{r-s}} \subseteq \mathcal{L}_U$ and $\mathcal{Z} = \mathcal{L}_{U_s} \subseteq \mathcal{L}_U$ $\Rightarrow U_s \Psi_r$ is stationary, where $\Psi_r \in \mathfrak{O}_r$, $U_s = \Phi \Sigma S \Theta^\top$, $U = \Phi \Sigma \Theta^\top$ (SVD), and S is a diagonal matrix w/s entries 1 and 0 o.w. $\forall s \in [r]$
- → Phase Retrieval: $\min_{x} h(x) = \frac{1}{2m} \sum_{i=1}^{m} (y_i^2 |a_i^H x|^2)^2$ Expected objective: $f(x) = \mathbb{E}(h(x)) = ||x||_2^4 + ||u||_2^4 - ||x||_2^2 ||u||_2^2 - |x^H u|^2$
 - Invariant group: $\mathcal{G} = \left\{ \mathsf{e}^{i\theta} \mid \theta \in [0, 2\pi) \right\}$; Fixed point:0
 - $\mathcal{Y} = \{y_i = 0, \forall i \in \mathcal{C}\}$ and $\mathcal{Z} = \{z_i = 0, \forall i \in [n] \setminus \mathcal{C}\}, \mathcal{C} \subseteq [n], |\mathcal{C}| \le n$ $\Rightarrow x \text{ is stationary, if } x^{\mathsf{H}}u = 0, \ x_{\mathcal{Y}} = 0, \ \|x\|_2 = \|u\|_2/\sqrt{2}$

00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Example	es		
→ Low	-rank Matrix Factoriz $f(X) = \frac{1}{2} XX^{\top} $	vation: $-M^*\parallel^2_2$, where $M^* = UU^\top$	

• Invariant group: $\mathfrak{O}_r = \{ \Psi \in \mathbb{R}^{r \times r} \mid \Psi \Psi^\top = \Psi^\top \Psi = I_r \}$; Fixed point:0

•
$$\mathcal{Y} = \mathcal{L}_{U_{r-s}} \subseteq \mathcal{L}_U$$
 and $\mathcal{Z} = \mathcal{L}_{U_s} \subseteq \mathcal{L}_U$
 $\Rightarrow U_s \Psi_r$ is stationary, where $\Psi_r \in \mathcal{D}_r$, $U_s = \Phi \Sigma S \Theta^\top$, $U = \Phi \Sigma \Theta^\top$
(SVD), and S is a diagonal matrix w/ s entries 1 and 0 o.w. $\forall s \in [r]$

- → Phase Retrieval: $\min_{x} h(x) = \frac{1}{2m} \sum_{i=1}^{m} (y_i^2 |a_i^H x|^2)^2$ Expected objective: $f(x) = \mathbb{E}(h(x)) = ||x||_2^4 + ||u||_2^4 - ||x||_2^2 ||u||_2^2 - |x^H u|^2$
 - Invariant group: $\mathcal{G} = \left\{ \mathsf{e}^{i \theta} \mid \theta \in [0, 2\pi) \right\}$; Fixed point:0
 - $\mathcal{Y} = \{y_i = 0, \forall i \in \mathcal{C}\}$ and $\mathcal{Z} = \{z_i = 0, \forall i \in [n] \setminus \mathcal{C}\}, \ \mathcal{C} \subseteq [n], \ |\mathcal{C}| \le n$ $\Rightarrow x \text{ is stationary, if } x^{\mathsf{H}}u = 0, \ x_{\mathcal{Y}} = 0, \ ||x||_2 = ||u||_2/\sqrt{2}$
- → Deep Linear Neural Networks ...

Definition (Tangent Space)

Let $\mathcal{M} \subset \mathbb{R}^m$ be a smooth *k*-dimensional manifold. Given $x \in \mathcal{M}$, we call $v \in \mathbb{R}^m$ as a **tangent vector** of \mathcal{M} at *x* if there exists a smooth curve $\gamma : \mathbb{R} \to \mathcal{M}$ with $\gamma(0) = x$ and $v = \gamma'(0)$. The set of tangent vectors of \mathcal{M} at *x* is called the **tangent space** of \mathcal{M} at *x*, denoted as

 $T_{x}\mathcal{M} = \left\{\gamma'(0) \mid \gamma : \mathbb{R} \to \mathcal{M} \text{ is smooth }, \ \gamma(0) = x\right\}.$

Definition (Tangent Space)

Let $\mathcal{M} \subset \mathbb{R}^m$ be a smooth *k*-dimensional manifold. Given $x \in \mathcal{M}$, we call $v \in \mathbb{R}^m$ as a **tangent vector** of \mathcal{M} at *x* if there exists a smooth curve $\gamma : \mathbb{R} \to \mathcal{M}$ with $\gamma(0) = x$ and $v = \gamma'(0)$. The set of tangent vectors of \mathcal{M} at *x* is called the **tangent space** of \mathcal{M} at *x*, denoted as

$$\mathcal{T}_x\mathcal{M}=\{\gamma'(0)\mid \gamma:\mathbb{R}
ightarrow\mathcal{M} ext{ is smooth }, \ \gamma(0)=x\}\,.$$

Constrained Optimization

Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let $\mathcal{M} \subset \mathbb{R}^m$ be a smooth *k*-dimensional manifold. Given $x \in \mathcal{M}$, we call $v \in \mathbb{R}^m$ as a **tangent vector** of \mathcal{M} at *x* if there exists a smooth curve $\gamma : \mathbb{R} \to \mathcal{M}$ with $\gamma(0) = x$ and $v = \gamma'(0)$. The set of tangent vectors of \mathcal{M} at *x* is called the **tangent space** of \mathcal{M} at *x*, denoted as

$$\mathcal{T}_x\mathcal{M} = \{\gamma'(0) \mid \gamma: \mathbb{R}
ightarrow \mathcal{M} ext{ is smooth }, \ \gamma(0) = x\}.$$

Theorem

If f has an invariant group ${\cal G}$ and H_x is the Hessian matrix at a stationary point x, then we have

 $T_x\mathcal{G}(x)\subseteq Null(H_x).$

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Example			

→ Low-rank Matrix Factorization: Let $\gamma : \mathbb{R} \to \mathfrak{O}_r(X)$ be a smooth curve, i.e., $\forall t \in \mathbb{R}, \exists \Psi_r \in \mathfrak{O}_r$ s.t. $\gamma(t) = g_t(X) = X\Psi_r$ and $\gamma(0) = g_0(X) = X$

$$\Rightarrow \gamma(t)\gamma(t)^{T} = XX^{T}$$

 $\Rightarrow \gamma'(0)X^T + X\gamma'(0)^T = 0$ by differentiation

 $\Rightarrow T_X \mathfrak{O}_r(X) = \{ XE \mid E \in \mathbb{R}^{r \times r}, E = -E^T \}, \text{ e.g., } U_s \Psi_r E \in \text{Null}(H_{U_s \Psi_r}) \}$

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Example			
→ Low-ra	ank Matrix Factoriz	ation: Let $\gamma:\mathbb{R} o\mathfrak{O}_r(X)$ be	a smooth curve,

i.e., $\forall t \in \mathbb{R}$, $\exists \Psi_r \in \mathfrak{O}_r$ s.t. $\gamma(t) = g_t(X) = X \Psi_r$ and $\gamma(0) = g_0(X) = X$

$$\Rightarrow \gamma(t)\gamma(t)^T = XX^T$$

- $\Rightarrow \gamma'(0)X^{T} + X\gamma'(0)^{T} = 0$ by differentiation
- $\Rightarrow T_X \mathfrak{O}_r(X) = \{ XE \mid E \in \mathbb{R}^{r \times r}, E = -E^T \}, \text{ e.g., } U_s \Psi_r E \in \mathsf{Null}(H_{U_s \Psi_r}) \}$

→ Phase Retrieval: Let $\gamma : \mathbb{R} \to \mathcal{G}(x)$ be a smooth curve, i.e., $\forall t \in \mathbb{R}$, $\exists \theta \in [0, 2\pi)$ s.t. $\gamma(t) = x e^{i\theta}$ and $\gamma(0) = x$

$$\Rightarrow \|\gamma(t)\|_{2}^{2} = \|x\|_{2}^{2}$$

$$\Rightarrow \gamma'(0)^{\mathsf{H}}x = -x^{\mathsf{H}}\gamma'(0) \text{ by differentiation w.r.t. } t$$

$$\Rightarrow T_{x}\mathcal{G}(x) = ix, \text{ e.g., } iue^{i\theta} \in \mathrm{Null}(H_{ue^{i\theta}})$$

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Examp	le		
→ Lov i.e., ∀i	w-rank Matrix Factoriz $t \in \mathbb{R}, \ \exists \Psi_r \in \mathfrak{O}_r \ ext{s.t.}$	vation: Let $\gamma:\mathbb{R} o\mathfrak{O}_r(X)$ be $\gamma(t)=g_t(X)=X\Psi_r$ and $\gamma(0)$	a smooth curve, $g_0(X) = X$

$$\Rightarrow \gamma(t)\gamma(t)^{T} = XX^{T}$$

$$\Rightarrow \gamma'(0)X^{T} + X\gamma'(0)^{T} = 0 \text{ by differentiation}$$

$$\Rightarrow T_{X}\mathfrak{O}_{r}(X) = \{XE \mid E \in \mathbb{R}^{r \times r}, E = -E^{T}\}, \text{ e.g., } U_{s}\Psi_{r}E \in \text{Null}(H_{U_{s}\Psi_{r}})$$

$$\Rightarrow \text{Phase Betrieval: Let } \gamma : \mathbb{R} \Rightarrow G(\chi) \text{ be a smooth curve, i.e. } \forall t \in \mathbb{R}$$

→ Phase Retrieval: Let $\gamma : \mathbb{R} \to \mathcal{G}(x)$ be a smooth curve, i.e., $\forall t \in \mathbb{R}$, $\exists \theta \in [0, 2\pi)$ s.t. $\gamma(t) = x e^{i\theta}$ and $\gamma(0) = x$

$$\Rightarrow \|\gamma(t)\|_{2}^{2} = \|x\|_{2}^{2}$$

$$\Rightarrow \gamma'(0)^{\mathsf{H}}x = -x^{\mathsf{H}}\gamma'(0) \text{ by differentiation w.r.t. } t$$

$$\Rightarrow T_{x}\mathcal{G}(x) = ix, \text{ e.g., } iue^{i\theta} \in \mathsf{Null}(H_{ue^{i\theta}})$$

→ Deep Linear Neural Networks ...

A Geometric Analysis of Low-Rank Matrix Factorization

Given an objective $\mathcal{F}(X)$, our analysis consists of the following major arguments:

- Identify all stationary points, i.e., the solutions of $\nabla \mathcal{F}(X) = 0$
- Identify the strict saddle point and their neighborhood such that $\lambda_{\min}(\nabla^2 \mathcal{F}(X)) < 0$, denoted as \mathcal{R}_1
- Identify the global minimum, their neighborhood, and the directions such that λ_{min}(∇²F(X)) > 0, denoted as R₂
- Verify that the gradient has a sufficiently large norm outside the regions described in (p2) and (p3), denoted as \mathcal{R}_3

 \implies Iterative algorithms **DO NOT** converge to saddle point, e.g. first order methods (Ge et al., 2015) and second order methods (Sun et al., 2016).

Symmetry Property

Constrained Optimization

Low-Rank Matrix Factorization: Rank-1 Case

Theorem

Consider $\min_{x \in \mathbb{R}^n} \mathcal{F}(x)$, where $\mathcal{F}(x) = \frac{1}{4} ||M^* - xx^\top||_F^2$. Define

$$\begin{split} \mathcal{R}_1 &\stackrel{\triangle}{=} \left\{ y \in \mathbb{R}^n \mid ||y||_2 \le \frac{1}{2} ||u||_2 \right\}, \\ \mathcal{R}_2 &\stackrel{\triangle}{=} \left\{ y \in \mathbb{R}^n \mid ||y - u||_2 \le \frac{1}{8} ||u||_2 \right\}, \text{ and} \\ \mathcal{R}_3 &\stackrel{\triangle}{=} \left\{ y \in \mathbb{R}^d \mid ||y||_2 > \frac{1}{2} ||u||_2, \ ||y - u||_2 > \frac{1}{8} ||u||_2 \right\}. \end{split}$$

Then the following properties hold.

- x = 0, u and -u are the only stationary points of $\mathcal{F}(x)$.
- x = 0 is a strict saddle point with $\lambda_{\min}(\nabla^2 \mathcal{F}(0)) = -||u||_2^2$. Moreover, for any $x \in \mathcal{R}_1$, $\lambda_{\min}(\nabla^2 \mathcal{F}(x)) \leq -\frac{1}{2}||u||_2^2$.
- For $x = \pm u$, x is a global minimum with $\lambda_{\min}(\mathcal{F}(x)) = ||u||_2^2$. Moreover, for any $x \in \mathcal{R}_2$, $\lambda_{\min}(\nabla^2 \mathcal{F}(x)) \geq \frac{1}{5} ||u||_2^2$.

• For any
$$x \in \mathcal{R}_3$$
, we have $||\nabla \mathcal{F}(x)||_2 > \frac{||u||_2^3}{8}$.

 Overview
 Symmetry Property
 Low-Rank Matrix Factorization
 Constrained Optimization

 00
 00000
 00000
 00000
 00000

Low-Rank Matrix Factorization: Rank-r Case

Introduce two sets:

$$\begin{split} \mathcal{X} &= \left\{ X = \Phi \Sigma_2 \Theta_2 \mid \mathcal{U} = \Phi \Sigma_1 \Theta_1 (\mathsf{SVD}), \ (\Sigma_2^2 - \Sigma_1^2) \Sigma_2 = 0, \Theta_2 \in \mathfrak{O}_r \right\}, \\ \mathcal{U} &= \left\{ X \in \mathcal{X} \mid \Sigma_2 = \Sigma_1 \right\}. \end{split}$$

Theorem

Consider $\min_{X \in \mathbb{R}^{n \times r}} \mathcal{F}(X)$, where $\mathcal{F}(X) = \frac{1}{4} ||M^* - XX^\top||_F^2$ for $r \ge 1$. Define

$$\begin{aligned} \mathcal{R}_{1} &\stackrel{\triangle}{=} \left\{ Y \in \mathbb{R}^{n \times r} \mid \sigma_{r}(Y) \leq \frac{1}{2} \sigma_{r}(U), \ \|YY^{\top}\|_{F} \leq 4\|M^{*}\|_{F} \right\}, \\ \mathcal{R}_{2} &\stackrel{\triangle}{=} \left\{ Y \in \mathbb{R}^{n \times r} \mid \min_{\Psi \in \mathfrak{O}_{r}} ||Y - U\Psi||_{2} \leq \frac{\sigma_{r}^{2}(U)}{8\sigma_{1}(U)} \right\}, \\ \mathcal{R}_{3}^{\prime} &\stackrel{\triangle}{=} \left\{ Y \in \mathbb{R}^{n \times r} \mid \sigma_{r}(Y) > \frac{1}{2} \sigma_{r}(U), \ \min_{\Psi \in \mathfrak{O}_{r}} ||Y - U\Psi||_{2} > \frac{\sigma_{r}^{2}(U)}{8\sigma_{1}(U)}, \\ \|YY^{\top}\|_{F} \leq 4\|M^{*}\|_{F} \right\}, \text{ and} \end{aligned}$$

$$\mathcal{R}_3'' \stackrel{\triangle}{=} \left\{ Y \in \mathbb{R}^{n \times r} \mid \|YY^\top\|_F > 4\|M^*\|_F \right\}.$$

Constrained Optimization

Low-Rank Matrix Factorization: Rank-r Case

Theorem (Continued...)

Then the following properties hold.

- $\forall X \in \mathcal{X}, X \text{ is a stationary point of } \mathcal{F}(X).$
- $\forall X \in \mathcal{X} \setminus \mathcal{U}, X \text{ is a strict saddle point with}$ $\lambda_{\min}(\nabla^2 \mathcal{F}(X)) \leq -\lambda_{\max}^2(\Sigma_1 - \Sigma_2).$ Moreover, for any $X \in \mathcal{R}_1$, $\nabla^2 \mathcal{F}(X), \lambda_{\min}(\nabla^2 \mathcal{F}(X)) \leq -\frac{\sigma_r^2(U)}{4}.$
- $\forall X \in \mathcal{U}, X \text{ is a global minimum of } \mathcal{F}(X) \text{ with nonzero}$ $\lambda_{\min}(\nabla^2 \mathcal{F}(X)) \ge \sigma_r^2(U) (r(r-1)/2 \text{ zero eigenvalues}). \text{ Moreover,}$ $\forall X \in \mathcal{R}_2, z^\top \nabla^2 \mathcal{F}(X) z \ge \frac{1}{5} \sigma_r^2(U) ||z||_2^2, \forall z \perp \mathcal{E}, \text{ where } \mathcal{E} \subseteq \mathbb{R}^{n \times r} \text{ is}$ a subspace spanned by eigenvectors of $\nabla^2 \mathcal{F}(K_E)$ with negative eigenvalues, $E = X - U\Psi_X$, and $K_E \stackrel{\triangle}{=} \begin{bmatrix} \frac{\mathcal{E}_{(x,1)}\mathcal{E}_{(x,2)}^\top}{\mathcal{E}_{(x,2)}\mathcal{E}_{(x,2)}} & \cdots & \mathcal{E}_{(x,r)}\mathcal{E}_{(x,r)}^\top}{\mathcal{E}_{(x,2)}\mathcal{E}_{(x,2)}^\top} & \cdots & \mathcal{E}_{(x,r)}\mathcal{E}_{(x,r)}^\top} \end{bmatrix}$.

• $\forall X \in \mathcal{R}'_3, ||\nabla \mathcal{F}(X)||_F > \frac{\sigma_r^{\ell}(U)}{9\sigma_1(U)} \text{ and } \forall X \in \mathcal{R}''_3, ||\nabla \mathcal{F}(X)||_F > \frac{3}{4}\sigma_1^3(X).$

Overview 00 Symmetry Property

Low-Rank Matrix Factorization

Constrained Optimization

Geometric Interpretation

Figure: In the case r = 1, the true model is $u = \begin{bmatrix} 1 & -1 \end{bmatrix}^{\top}$. In the case r = 2, the true model is $U = \begin{bmatrix} 1 & -1 \end{bmatrix}$.

00 00000	0000000	00000
Extensions		

→ General Rectangular Matrix: we have $M^* = UV^{\top}$ and solve

$$\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} \mathcal{F}_{\lambda}(X, Y) = \frac{1}{8} ||XY^{\top} - M^*||_{\mathsf{F}}^2 + \frac{\lambda}{4} ||X^{\top}X - Y^{\top}Y||_{\mathsf{F}}^2$$

$$\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} \mathcal{F}_{\lambda}(X, Y) = \frac{1}{8} ||XY^{\top} - M^*||_{\mathsf{F}}^2 + \frac{\lambda}{4} ||X^{\top}X - Y^{\top}Y||_{\mathsf{F}}^2$$

Figure: r = 1, the true model is u = v = 1.

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Extension	S		

→ General Rectangular Matrix: we have $M^* = UV^{\top}$ and solve

$$\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} \mathcal{F}_{\lambda}(X, Y) = \frac{1}{8} ||XY^{\top} - M^*||_F^2 + \frac{\lambda}{4} ||X^{\top}X - Y^{\top}Y||_F^2$$

→ Matrix Sensing: we observe $y_{(i)} = \langle A_i, M^* \rangle + z_{(i)}$ for all $i \in [d]$, $\{z_{(i)}\}_{i=1}^d$ are noise, and solve

$$\min_{X} F(X) = \frac{1}{4d} \sum_{i=1}^{d} (y_i - \langle A_i, XX^{\top} \rangle)^2$$

Overview 00	Symmetry Property	Low-Rank Matrix Factorization	Constrained Optimization
Extension	S		

→ General Rectangular Matrix: we have $M^* = UV^{\top}$ and solve

$$\min_{X \in \mathbb{R}^{n \times r}, Y \in \mathbb{R}^{m \times r}} \mathcal{F}_{\lambda}(X, Y) = \frac{1}{8} ||XY^{\top} - M^*||_F^2 + \frac{\lambda}{4} ||X^{\top}X - Y^{\top}Y||_F^2$$

→ Matrix Sensing: we observe $y_{(i)} = \langle A_i, M^* \rangle + z_{(i)}$ for all $i \in [d]$, $\{z_{(i)}\}_{i=1}^d$ are noise, and solve

$$\min_{X} F(X) = \frac{1}{4d} \sum_{i=1}^{d} (y_i - \langle A_i, XX^{\top} \rangle)^2$$

→ Matrix Completion ...

 \Longrightarrow Analogous geometric properties to those of low-rank matrix factorization.

Implication to Convergence Analysis

Direct result of convergence guarantees:

- → First order methods:
 - Gradient descent: Asymptotic convergence guarantee of Q-linear convergence to a local minimum (Lee et al., 2016; Panageas and Piliouras, 2016)
 - Noisy stochastic gradient descent: R-sublinear convergence to a local minimum (Ge et al., 2015)

Implication to Convergence Analysis

Direct result of convergence guarantees:

- → First order methods:
 - Gradient descent: Asymptotic convergence guarantee of Q-linear convergence to a local minimum (Lee et al., 2016; Panageas and Piliouras, 2016)
 - Noisy stochastic gradient descent: R-sublinear convergence to a local minimum (Ge et al., 2015)
- → Second order methods:
 - Trust-region methods: R-quadratic convergence to a global minimum (Sun et al., 2016)
 - Second-order majorization: Sublinear convergence guarantee (Carmon & Duchi, 2016)

→ Consider the generalized eigenvalue decomposition (GEV) problem:

$$\min_{X \in \mathbb{R}^{d \times r}} \mathcal{F}(X) = -\operatorname{tr}(X^{\top}AX) \quad \text{subject to} \quad X^{\top}BX = I_r$$

• Apply the method of Lagrange multipliers,

$$\min_{X} \max_{Y} \mathcal{L}(X,Y) = -\operatorname{tr}(X^{\top}AX) + \langle Y, X^{\top}BX - I_r \rangle$$

• The gradient of Lagrangian function:

$$\nabla \mathcal{L} \triangleq \left[\begin{array}{c} \nabla_{X} \mathcal{L}(X, Y) \\ \nabla_{Y} \mathcal{L}(X, Y) \end{array} \right] = \left[\begin{array}{c} 2BXY - 2AX \\ X^{\top}BX - I_{r} \end{array} \right]$$

.

• At a stationary point, the dual variable satisfies

$$Y = \mathcal{D}(X) \triangleq X^{\top} A X$$

Adaptation of Definition

Definition

Given the Lagrangian function $\mathcal{L}(X, Y)$, a pair of point (X, Y) is called:

- A stationary point of $\mathcal{L}(X, Y)$, if $\nabla \mathcal{L} = 0$
- An unstable stationary point of L(X, Y), if (X, Y) is a stationary point and for any neighborhood B ⊆ ℝ^{d×r} of X, there exist X₁, X₂ ∈ B such that

$$\mathcal{L}(X_1,Y)|_{Y=\mathcal{D}(X_1)} \leq \mathcal{L}(X,Y)|_{Y=\mathcal{D}(X)} \leq \mathcal{L}(X_2,Y)|_{Y=\mathcal{D}(X_2)},$$

and $\lambda_{\min}(
abla_X^2 \mathcal{L}(X, Y)|_{Y = \mathcal{D}(X)}) \leq 0$

• A convex-concave saddle point, or a minimax point of $\mathcal{L}(X, Y)$, if (X, Y) is a stationary point and (X, Y) is a global optimum, i.e.

$$(X, Y) = \arg\min_{\tilde{X}} \max_{\tilde{Y}} \mathcal{L}(\tilde{X}, \tilde{Y}).$$

Constrained Optimization

Characterization of Stationary Point

→ Consider nonsingular *B*:

Let the eigendecomposition be $B^{-1/2}AB^{-1/2} = O^{\dagger}\Lambda^{\dagger}(O^{\dagger})^{\top}$. Consider the following decomposition:

$$\begin{aligned} \mathcal{U}_{\mathcal{S}} &= \left\{ U \in \mathbb{R}^{d \times s} : U = O^{\dagger}_{:,\mathcal{S}}, \mathcal{S} \subseteq [r] \text{ with } |\mathcal{S}| = s \leq r \right\}, \\ \mathcal{V}_{\tilde{\mathcal{S}}} &= \left\{ V \in \mathbb{R}^{d \times (r-s)} : V = O^{\dagger}_{:,\tilde{\mathcal{S}}}, \tilde{\mathcal{S}} \subseteq [d] \setminus [r] \text{ with } |\tilde{\mathcal{S}}| = r-s, |\mathcal{S}| = s \leq r \right\}. \end{aligned}$$

Theorem (Symmetry Property)

Suppose that A and B are symmetric and B is nonsingular. Then $(X, \mathcal{D}(X))$ is a stationary is a stationary point of $\mathcal{L}(X, Y)$, i.e., $\nabla \mathcal{L} = 0$, if and only if $X = B^{-1/2}\tilde{X}$ for any $\tilde{X} \in \mathcal{G}_{\mathcal{U}_{\mathcal{S}}}(V)$ with any $V \in \mathcal{V}_{\tilde{\mathcal{S}}}$, where $\mathcal{G}_{\mathcal{U}_{\mathcal{S}}}(V) = \{g_{\mathcal{U}} : g_{\mathcal{U}_{\mathcal{S}}}(V) = g(U \oplus V), g \in \mathcal{G}, U \in \mathcal{U}_{\mathcal{S}}\}.$

Symmetry Property

Low-Rank Matrix Factorization

Constrained Optimization

Unstable Stationary vs. Saddle Point

The GEV problem reduces to

$$ilde{X}^* = \operatorname*{argmin}_{ ilde{X} \in \mathbb{R}^{d imes r}} - \operatorname{tr}(ilde{X}^ op ilde{A} ilde{X}) \quad ext{s.t.} \quad ilde{X}^ op ilde{X} = I_r,$$

where
$$\tilde{X} = B^{1/2}X$$
 and $\tilde{A} = B^{-1/2}AB^{-1/2}$.

Lemma

Let $X = B^{-1/2}\tilde{X}$ for any $\tilde{X} \in \mathcal{G}_{\mathcal{U}_{\mathcal{S}}}(V)$ and any $V \in \mathcal{V}_{\tilde{\mathcal{S}}}$ with $\mathcal{S} \subseteq [r]$. If $\mathcal{S} = [r]$ and $\tilde{\mathcal{S}} = \emptyset$, then $(X, \mathcal{D}(X))$ is a saddle point of the min-max problem. Otherwise, if $\mathcal{S} \subset [r]$ and $\tilde{\mathcal{S}} \subseteq [d] \setminus [r]$, $\tilde{\mathcal{S}} \neq \emptyset$, with $|\mathcal{S}| + |\tilde{\mathcal{S}}| = r$, then $(X, \mathcal{D}(X))$ is an unstable stationary point with

$$\lambda_{\min}(H_X) \leq \frac{2\left(\lambda_{\max \mathcal{S} \cup \tilde{\mathcal{S}}}^{\dagger} - \lambda_{\min \mathcal{S}^{\perp} \cap \tilde{\mathcal{S}}^{\perp}}^{\dagger}\right)}{\|X_{:,\min \mathcal{S}^{\perp} \cap \tilde{\mathcal{S}}^{\perp}}\|_2^2} \text{ and } \lambda_{\max}(H_X) \geq \frac{4\lambda_{\min \mathcal{S} \cup \tilde{\mathcal{S}}}^{\dagger}}{\|X_{:,\min \mathcal{S} \cup \tilde{\mathcal{S}}}\|_2^2},$$

where $\lambda_{\max S}^{\dagger}$ ($\lambda_{\min S}^{\dagger}$) is the smallest (largest) eigenvalue of $B^{-1/2}AB^{-1/2}$ indexed by a set S.

Extension and Algorithm

- \rightarrow Extension to Singular *B*
 - Use generalized inverse, much more involved
- \rightarrow An asymptotic sublinear convergence of online optimization
 - Simple update: $X^{(k+1)} \leftarrow X^{(k)} \eta \left(B^{(k)} X^{(k)} X^{(k)\top} I_d \right) A^{(k)} X^{(k)}$
 - Characterization using stochastic differential equation (SDE)

Extension and Algorithm

- \rightarrow Extension to Singular *B*
 - Use generalized inverse, much more involved
- \rightarrow An asymptotic sublinear convergence of online optimization
 - Simple update: $X^{(k+1)} \leftarrow X^{(k)} \eta \left(B^{(k)} X^{(k)} X^{(k)\top} I_d \right) A^{(k)} X^{(k)}$
 - Characterization using stochastic differential equation (SDE)

Thank you !