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Background

Consider a low-rank matrix estimation problem:

mAj,n f(M) subject to rank(M) <,

where f : R"™™ — R is convex and smooth

e Fit Wide class of problems; NP-hard in general
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Background

Consider a low-rank matrix estimation problem:
mAj,n f(M) subject to rank(M) <,

where f : R™™ — R is convex and smooth

e Fit Wide class of problems; NP-hard in general
= Convex relaxation:

mNi,n f(M) subject to ||M||. <,

e Easy to analyze; Computationally Expensive, e.g., SVD

= Nonconvex formulation:

min f(Xy"),
XERXr Y cRmxr

e Good empirical performance; Challenging for analysis
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Background

Challenges in minycpnxr yegmxr FXYT):

e Infinitely many nonisolated saddle points
Example: (X,Y) is a saddle — (X®, Y®) is also a saddle V ¢

e Nonconvex on X, Y, even f(-) is convex
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Background

Challenges in minxcpnxr ycgmxr FXYT):

e Infinitely many nonisolated saddle points
Example: (X,Y) is a saddle — (X®, Y®) is also a saddle V ¢

e Nonconvex on X, Y, even f(-) is convex

Existing approach:
e Generalization of convexity: Local regularity condition (Candes et al., 2015)

® Geometric characterization: Local properties vs. Global properties
(Ge et al., 2016; Sun et al., 2016)

Our approach:
e A novel theory characterizing stationary points
e A full geometric characterization of low-rank matrix factorization

® An extension to constrained problems
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Different Types of Stationary Points
Definition

Given a smooth function f : R” — R, a point x € R” is called:
(i) a stationary point, if Vf(x) =0;

(ii) a local minimum, if x is a stationary and 3 a neighborhood B C R”"
of x such that f(x) < f(y) for any y € B;

(iii) a global minimum, if x is a stationary and f(x) < f(y), Vy € R";

(iv) a strict saddle point, if x is a stationary and V neighborhood
B CR"of x, 3y, z € Bs.t. f(z) < f(x) < F(y) & Amin(V3f(x)) < 0.

;‘ 20 ‘( \ A /

(a) strict saddle  (b) local minimum  (c) global minimum

nh b o v s
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A Generic Theory for Stationary Points

® Invariant group G of f: A subgroup of a special linear group, if
f(x) = f(g(x)) for all x e R™ and g € G.
@ Fixed point xg of a group G: if g(xg) = xg for all g € G.

Theorem (Stationary Fixed Point)

Suppose f has an invariant group G and G has a fixed point xg. If we have
A
G(R™) = Span{g(x) —x | g € G,x eR™} =R",

then xg is a stationary point of f.
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A Generic Theory for Stationary Points

® Invariant group G of f: A subgroup of a special linear group, if
f(x) = f(g(x)) for all x e R™ and g € G.
@ Fixed point xg of a group G: if g(xg) = xg for all g € G.

Theorem (Stationary Fixed Point)

Suppose f has an invariant group G and G has a fixed point xg. If we have
A
G(R™) = Span{g(x) —x | g € G,x eR™} =R",

then xg is a stationary point of f.

Corollary

If yg,, is a fixed point of Gy, an induced subgroup of G, and

z*(ygy) € arg 2€T0 V.f(yg, ® 2),

then g(yg, ©® z*) is a stationary point for all g € G.
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> Low-rank Matrix Factorization:
minx f(X) = |IXXT — M*||Z, where M* = UUT
e Invariant group:9, = {W € R | WWT = WTW = |, }; Fixed point:0
e V=Ly ., CLyand Z=Ly, C Ly

= U,V, is stationary, where VU, € O,, U; = ¢£50T,U = oXOT
(SVD), and S is a diagonal matrix w/ s entries 1 and 0 o.w. Vs € [r]
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e V=Ly ., CLyand Z=Ly, C Ly
= U,V, is stationary, where VU, € O,, U; = ¢£50T,U = oXOT
(SVD), and S is a diagonal matrix w/ s entries 1 and 0 o.w. Vs € [r]

- Phase Retrieval: min, h(x) = 5 > (y,2 - |a}*x|2)2

2m
Expected objective: (x) = E(h(x)) = x| + lulld — x[3lul3 — [x"ul
e Invariant group:G = {e’ | 6 € [0,27)}; Fixed point:0
e V={y,=0,¥VieCland Z={z=0,Viec [n]\C}, CC[n], |C| <n
= x is stationary, if x{u =0, xy =0, ||x|l2 = ||ull2/V2
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> Low-rank Matrix Factorization:
minx f(X) = |IXXT — M*||Z, where M* = UUT
e Invariant group:9, = {W € R | WWT = WTW = |, }; Fixed point:0
e V=Ly ., CLyand Z=Ly, C Ly
= U,V, is stationary, where VU, € O,, U; = ¢£50T,U = oXOT
(SVD), and S is a diagonal matrix w/ s entries 1 and 0 o.w. Vs € [r]

- Phase Retrieval: min, h(x) = £ 37 (y? — |a}"x|2)2
Expected objective: f(x) = E(h(x)) = [|x[|3 + |ull3 — [Ix|[3]|ull3 — [x"u/?
e Invariant group:G = {e’ | 6 € [0,27)}; Fixed point:0
e V={y,=0,¥VieCland Z={z=0,Viec [n]\C}, CC[n], |C| <n
= x is stationary, if x"u =0, xy =0, ||x|]2 = [Jul2/v2

=> Deep Linear Neural Networks ...
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Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let M C R™ be a smooth k-dimensional manifold. Given x € M, we call
v € R™ as a tangent vector of M at x if there exists a smooth curve

v : R — M with 4(0) = x and v = +/(0). The set of tangent vectors of
M at x is called the tangent space of M at x, denoted as

T.M = {7 (0) | v : R — M is smooth , y(0) = x}.
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Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let M C R™ be a smooth k-dimensional manifold. Given x € M, we call
v € R™ as a tangent vector of M at x if there exists a smooth curve

v : R — M with 4(0) = x and v = +/(0). The set of tangent vectors of
M at x is called the tangent space of M at x, denoted as

T.M = {7 (0) | v : R — M is smooth , y(0) = x}.

) T, M

—
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Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let M C R™ be a smooth k-dimensional manifold. Given x € M, we call
v € R™ as a tangent vector of M at x if there exists a smooth curve

v : R — M with 4(0) = x and v = +/(0). The set of tangent vectors of
M at x is called the tangent space of M at x, denoted as

T.M = {7 (0) | v : R — M is smooth , y(0) = x}.

Theorem

If f has an invariant group G and H, is the Hessian matrix at a stationary
point x, then we have

TG(x) C Null(Hy).
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=> Low-rank Matrix Factorization: Let v : R — O,(X) be a smooth curve,
e, VteR, IV, € O, s.t. y(t) = g(X) = XV, and 7(0) = go(X) = X

= ()T =XXT
= ' (0)XT + X+/(0)7 = 0 by differentiation
o TxO,(X) = {XE | E€ R E = —ET}, eg., UsW,E € Null(Hu,v,)
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=> Low-rank Matrix Factorization: Let v : R — O,(X) be a smooth curve,
e, VteR, IV, € O, s.t. y(t) = g(X) = XV, and 7(0) = go(X) = X

(T = XXT
= 7/(0)XT + X+/(0)" = 0 by differentiation
= TxO.(X)={XE | E € R*" E=—ET}, eg., UV,E € Null(Hyu,)
= Phase Retrieval: Let v : R — G(x) be a smooth curve, i.e., Vt € R,
36 € [0,27) s.t. y(t) = xe’® and v(0) = x
= H“Y(t)H% = [IxI2
( H

)ix = —va’(O) by differentiation w.r.t. t
= T,G(x) = ix, e.g., iue’® € Null(H,»)
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=> Low-rank Matrix Factorization: Let v : R — O,(X) be a smooth curve,
e, VteR, IV, € O, s.t. y(t) = g(X) = XV, and 7(0) = go(X) = X

= ()T =XXT
= ' (0)XT + X+/(0)7 = 0 by differentiation
o TxO,(X) = {XE | E€ R E = —ET}, eg., UsW,E € Null(Hu,v,)

= Phase Retrieval: Let v: R — G(x) be a smooth curve, i.e., Vt € R,
36 € [0,27) s.t. y(t) = xe’® and v(0) = x

= (0I5 = [Ix]3
= 7'(0)"x = —xH+/(0) by differentiation w.r.t. t
= T,G(x) = ix, e.g., iue’® € Null(H,»)

=> Deep Linear Neural Networks ...
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A Geometric Analysis of Low-Rank Matrix

Factorization

Given an objective F(X), our analysis consists of the following major
arguments:

e Identify all stationary points, i.e., the solutions of VF(X) =0

e Identify the strict saddle point and their neighborhood such that
Amin(V2F(X)) < 0, denoted as R

e Identify the global minimum, their neighborhood, and the directions
such that Amin(V2F(X)) > 0, denoted as R,

e Verify that the gradient has a sufficiently large norm outside the

regions described in (p2) and (p3), denoted as R3

— lterative algorithms DO NOT converge to saddle point, e.g. first
order methods (Ge et al, 2015) and second order methods (sun et al., 2016).
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Constrained Optimization
00000

Low-Rank Matrix Factorization: Rank-1 Case

Theorem

Consider minyegn F(x), where F(x) = 3||M* — xx"||2. Define

R1 2 {y € R ||lyll2 < Lllulla},

Ra2 {y € R"[|ly — ull> < &||ull2} , and

Rs = {y € R | |lyll2 > Llullz, lly — ull2 > 4full2]} .
Then the following properties hold.

® x =0, u and —u are the only stationary points of F(x).

e x = 0 is a strict saddle point with A\min(V2F(0)) = —||u|[3.
Moreover, for any x € Ry, Amin(V2F(x)) < —21||ul[3.

® For x = *u, x is a global minimum with Amin(F(x)) = ||u][3.
Moreover, for any x € Rz, Amin(V2F(x)) > £||ul|3.

S]
® For any x € R3, we have ||[VF(x)||» > %'
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Low-Rank Matrix Factorization: Rank-r Case

Introduce two sets:

X ={X =050, | U=05;0:(SVD), (X3 -1, =0,0,€ 9O,},
UZ{X€X|Z2:Z:{}

Theorem

Consider minycgoxr F(X), where F(X) = Y||M* — XXT||% for r > 1.
Define

A
Ri={Y eR™" | a(Y) < 30.(U), [YY Tl < 4IM*F},
o7 (V)
801(U) [
R L Y € Rnxr \% 1 U : Y — U a2(U)
3= { € | o (Y) > Ear( ), minyeo, [|Y — |2 > 8o1(0)”

IYYTllF < 4|M |}, and
AN
RY 2 {Y € R | [ YY Tl > 4|M*}

A :
Ry = {Y € R™" | minyeo,

Y - UV, <
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Low-Rank Matrix Factorization: Rank-r Case

Theorem (Continued...)

Then the following properties hold.
e VX € X, X is a stationary point of F(X).

e VX € X\U, X is a strict saddle point with
Amin(V2F(X)) < =A2_ (X1 — X2). Moreover, for any X € Ry,

V2F(X), Amin(V2F(X)) < — 24,

e VX €U, X is a global minimum of F(X) with nonzero
Amin(V2F (X)) > 02(U) (r(r — 1)/2 zero eigenvalues). Moreover,
VX € Ry, 2" V2F(X)z > £02(U)||z|3, Vz L E, where € C R™" s
a subspace spanned by eigenvectors of V2F(Kg) with negative

A E(‘-l)E(;l) E(v.z)E&n o B E&,n
- EenEla EeoEly - EwnEl
eigenvalues, E = X — UV, and Kg = | "o»fca feafen 0 Eenfea |
E(en) E(I,,) E.2) E(:,) s B E(:,)

o VX € Ry, [[VF(X)|lr > gl and ¥X € RY, [VF(X)||F > 303(X).
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Geometric Interpretation

Z(2)
0
r=1
-1
]
;
-2 T2y 0 0
2 10 -1 4T
()
2 1
F(X)
; 1
Xa2) F(X)
0 105 0.5
r=2
4 0
! 1
2, 4 0 1 P Xaz) 0 0
X - 4 Xay

Figure: In the case r = 1, the true model is u = [1 — 1] . In the case
r =2, the true model is U =[1 —1].
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Extensions

- General Rectangular Matrix: we have M* = UV T and solve

1 A
i FAX,Y)=|IXYT = M* |2+ Z|IXTX = YTY|>
XeRnXTI\I)eRer >‘( ) 8” HF+ 4|| ||F
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Extensions

- General Rectangular Matrix: we have M* = UV T and solve

1 A
i X, Y)=2|IXYT = M* 2+ Z2IXTX - YTY|]?
XGR”XTI\DGRerFA( ) ) 8” ||F+ 4|| ||F

f x,1
(z y) Falz,y)
L] :
| f 1
0
: 0 v
Yy o “ ?
-2 2 1 0 1 2
xr

]:(X7)/) ]:>\(X7y)

Figure: r = 1, the true model is u = v = 1.
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Extensions

- General Rectangular Matrix: we have M* = UV T and solve

1 A
i FAX,Y)=|IXYT = M* |2+ Z|IXTX = YTY|>
XeRnXTI\I)eRer >‘( ) 8” HF+ 4|| ||F

=> Matrix Sensing: we observe y(jy = (A;, M*) 4 z;) for all i € [d],
{z(1)}¢_, are noise, and solve
1
: _ A T2
min F(X)= o ,-E,l(y’ (A, XX1Y)
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Extensions

- General Rectangular Matrix: we have M* = UV T and solve

1 A
i FAX,Y)=|IXYT = M* |2+ Z|IXTX = YTY|>
XeRnXTI\I)eRer >‘( ) 8” HF+ 4|| ||F

=> Matrix Sensing: we observe y(jy = (A;, M*) 4 z;) for all i € [d],
{z(1)}¢_, are noise, and solve

d
. 1 T\)2
min F(X) = @;(}4‘ — (A, XX 1))
=> Matrix Completion ...

= Analogous geometric properties to those of low-rank matrix
factorization.



Overview Symmetry Property Low-Rank Matrix Factorization Constrained Optimization
oo 00000 ©000000e 00000

Implication to Convergence Analysis

Direct result of convergence guarantees:
=> First order methods:

e Gradient descent: Asymptotic convergence guarantee of Q-linear
COnVergence to a IOcal minimum (Lee et al., 2016; Panageas and Piliouras, 2016)

e Noisy stochastic gradient descent: R-sublinear convergence to a local
MIiNiMumM (Ge et al., 2015)
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Implication to Convergence Analysis

Direct result of convergence guarantees:
=> First order methods:

e Gradient descent: Asymptotic convergence guarantee of Q-linear
COnVergence to a IOcal minimum (Lee et al., 2016; Panageas and Piliouras, 2016)

e Noisy stochastic gradient descent: R-sublinear convergence to a local
MIiNiMumM (Ge et al., 2015)

=> Second order methods:

e Trust-region methods: R-quadratic convergence to a global minimum
(Sun et al., 2016)

e Second-order majorization: Sublinear convergence guarantee (Carmon &
Duchi, 2016)
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Extension to Nonconvex Constrained Optimization

=> Consider the generalized eigenvalue decomposition (GEV) problem:

min  F(X) = —tr(XTAX) subject to X' BX =1,
XeRer

e Apply the method of Lagrange multipliers,
min max L(X,Y) = —tr(XTAX) + (Y, XTBX — I,)
e The gradient of Lagrangian function:

VL2 { VxL(X,Y) } B [ 2BXY — 2AX }

VyL(X,Y) | XTBX — 1,
e At a stationary point, the dual variable satisfies

Y =D(X) & XTAX
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Adaptation of Definition
Definition

Given the Lagrangian function £(X, Y), a pair of point (X, Y) is called:
e A stationary point of £L(X,Y), if VL =0

e An unstable stationary point of £(X, Y), if (X, Y) is a stationary
point and for any neighborhood B C RY*" of X, there exist
X1, Xo € B such that

L(X1, Y)ly=px) < L(X, Y)ly=px) < L(X2, Y)|y=D(x2)>
and )\min(Viﬁ(X, Y)|y:D(X)) < 0

e A convex-concave saddle point, or a minimax point of £(X, Y),
if (X,Y) is a stationary point and (X, Y) is a global optimum, i.e.

(X,Y) =argminmax L(X,Y).
X v
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Characterization of Stationary Point

-> Consider nonsingular B:

Let the eigendecomposition be B~1/2AB~1/2 = OfAT(OT)T. Consider the
following decomposition:

Us = {UeRdXS U= O:]:S,Sg [r] with |S] =s < r},

Ve = {\/ eRC9 v = 0 & C[d]\[1] with |$] =r —5,|S| =5 < r}.

Theorem (Symmetry Property)

Suppose that A and B are symmetric and B is nonsingular. Then
(X,D(X)) is a stationary is a stationary point of L(X,Y), i.e., VL =0, if
and only if X = B=Y/2X for any X € Gys(V) with any V € Vs, where
Gus(V) = {au : gus(V) =g(U& V), g € G,U € Us}.
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Unstable Stationary vs. Saddle Point

The GEV problem reduces to

X* = argmin —tr(XTAX) st. XTX =]

)?E]Rdx’ "
where X = BY/2X and A= B~1/2AB~1/2,
Lemma

Let X = B~Y2X for any X € Gys(V) and any V Vs with S C [r]. If
S =[r] and § =0, then (X, D(X)) is a saddle point of the min-max
problem. Otherwise, if S C [r] and S C [d]\[r], S # 0, with |S| + |S| =r,
then (X, D(X)) is an unstable stationary point with

2 (M srsus = Minsinss) o
Amin(Hx) < ——2x898__mnS 0577 and Amax(Hx) 2 - minSUS

”X:,minSLOS'i”% H :,minSUS”%7

where \|_ o (AL <) is the smallest (largest) eigenvalue of B~1/2AB~1/2
indexed by a set S.



Overview Symmetry Property Low-Rank Matrix Factorization Constrained Optimization
oo 00000 0000000 ocoooe

Extension and Algorithm

= Extension to Singular B

e Use generalized inverse, much more involved

=> An asymptotic sublinear convergence of online optimization
e Simple update: X(+1) « X(0) —p (BUX () XT — ;) Al X(K)

e Characterization using stochastic differential equation (SDE)
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Extension and Algorithm

= Extension to Singular B

e Use generalized inverse, much more involved

=> An asymptotic sublinear convergence of online optimization
e Simple update: X(+1) « X(0) —p (BUX () XT — ;) Al X(K)

e Characterization using stochastic differential equation (SDE)

Thank you !
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