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Overview Symmetry Property Low-Rank Matrix Factorization Constrained Optimization

Background

Consider a low-rank matrix estimation problem:

min
M

f (M) subject to rank(M) ≤ r ,

where f : Rn×m → R is convex and smooth

• Fit Wide class of problems; NP-hard in general

: Convex relaxation:

min
M

f (M) subject to ||M||∗ ≤ τ,

• Easy to analyze; Computationally Expensive, e.g., SVD

: Nonconvex formulation:

min
X∈Rn×r ,Y∈Rm×r

f (XY>),

• Good empirical performance; Challenging for analysis
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Background

Challenges in minX∈Rn×r ,Y∈Rm×r f (XY>):

• Infinitely many nonisolated saddle points
Example: (X ,Y ) is a saddle → (XΦ,YΦ) is also a saddle ∀ Φ

• Nonconvex on X ,Y , even f (·) is convex

Existing approach:

• Generalization of convexity: Local regularity condition (Candes et al., 2015)

• Geometric characterization: Local properties vs. Global properties
(Ge et al., 2016; Sun et al., 2016)

Our approach:

• A novel theory characterizing stationary points

• A full geometric characterization of low-rank matrix factorization

• An extension to constrained problems
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Different Types of Stationary Points

Definition

Given a smooth function f : Rn → R, a point x ∈ Rn is called:

(i) a stationary point, if ∇f (x) = 0;

(ii) a local minimum, if x is a stationary and ∃ a neighborhood B ⊆ Rn

of x such that f (x) ≤ f (y) for any y ∈ B;

(iii) a global minimum, if x is a stationary and f (x) ≤ f (y), ∀y ∈ Rn;

(iv) a strict saddle point, if x is a stationary and ∀ neighborhood
B ⊆ Rn of x , ∃y , z ∈ B s.t. f (z) ≤ f (x) ≤ f (y) & λmin(∇2f (x)) < 0.

(a) strict saddle (b) local minimum (c) global minimum
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A Generic Theory for Stationary Points

• Invariant group G of f : A subgroup of a special linear group, if
f (x) = f (g(x)) for all x ∈ Rm and g ∈ G.
• Fixed point xG of a group G: if g(xG) = xG for all g ∈ G.

Theorem (Stationary Fixed Point)

Suppose f has an invariant group G and G has a fixed point xG . If we have

G(Rm)
4
= Span{g(x)− x | g ∈ G, x ∈ Rm} = Rm,

then xG is a stationary point of f .

Corollary

If yGY is a fixed point of GY , an induced subgroup of G, and

z∗(yGY ) ∈ arg zero
z
∇z f (yGY ⊕ z),

then g(yGY ⊕ z∗) is a stationary point for all g ∈ G.
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Examples

: Low-rank Matrix Factorization:

minX f (X ) = 1
4‖XX> −M∗‖2

F, where M∗ = UU>

• Invariant group:Or = {Ψ ∈ Rr×r | ΨΨ> = Ψ>Ψ = Ir}; Fixed point:0

• Y = LUr−s ⊆ LU and Z = LUs ⊆ LU

⇒ UsΨr is stationary, where Ψr ∈ Or , Us = ΦΣSΘ>,U = ΦΣΘ>

(SVD), and S is a diagonal matrix w/ s entries 1 and 0 o.w. ∀s ∈ [r ]

: Phase Retrieval: minx h(x) = 1
2m

∑m
i=1

(
y2
i − |aH

i x |2
)2

Expected objective: f (x) = E(h(x)) = ‖x‖4
2 + ‖u‖4

2 − ‖x‖2
2‖u‖2

2 − |xHu|2

• Invariant group:G =
{

eiθ | θ ∈ [0, 2π)
}

; Fixed point:0

• Y = {yi = 0,∀i ∈ C} and Z = {zi = 0,∀i ∈ [n]\C}, C ⊆ [n], |C| ≤ n

⇒ x is stationary, if xHu = 0, xY = 0, ‖x‖2 = ‖u‖2/
√

2

: Deep Linear Neural Networks ...
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Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let M⊂ Rm be a smooth k-dimensional manifold. Given x ∈M, we call
v ∈ Rm as a tangent vector of M at x if there exists a smooth curve
γ : R→M with γ(0) = x and v = γ′(0). The set of tangent vectors of
M at x is called the tangent space of M at x , denoted as

TxM = {γ′(0) | γ : R→M is smooth , γ(0) = x} .
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Null Space of Hessian Matrix at Stationary Points

Definition (Tangent Space)

Let M⊂ Rm be a smooth k-dimensional manifold. Given x ∈M, we call
v ∈ Rm as a tangent vector of M at x if there exists a smooth curve
γ : R→M with γ(0) = x and v = γ′(0). The set of tangent vectors of
M at x is called the tangent space of M at x , denoted as

TxM = {γ′(0) | γ : R→M is smooth , γ(0) = x} .

Theorem

If f has an invariant group G and Hx is the Hessian matrix at a stationary
point x , then we have

TxG(x) ⊆ Null(Hx).
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Example

: Low-rank Matrix Factorization: Let γ : R→ Or (X ) be a smooth curve,
i.e., ∀t ∈ R, ∃Ψr ∈ Or s.t. γ(t) = gt(X ) = XΨr and γ(0) = g0(X ) = X

⇒ γ(t)γ(t)T = XXT

⇒ γ′(0)XT + Xγ′(0)T = 0 by differentiation

⇒ TXOr (X ) = {XE | E ∈ Rr×r ,E = −ET}, e.g., UsΨrE ∈ Null(HUsΨr )

: Phase Retrieval: Let γ : R→ G(x) be a smooth curve, i.e., ∀t ∈ R,
∃θ ∈ [0, 2π) s.t. γ(t) = xeiθ and γ(0) = x

⇒ ‖γ(t)‖2
2 = ‖x‖2

2

⇒ γ′(0)Hx = −xHγ′(0) by differentiation w.r.t. t

⇒ TxG(x) = ix , e.g., iueiθ ∈ Null(Hueiθ )

: Deep Linear Neural Networks ...
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A Geometric Analysis of Low-Rank Matrix
Factorization

Given an objective F(X ), our analysis consists of the following major
arguments:

• Identify all stationary points, i.e., the solutions of ∇F(X ) = 0

• Identify the strict saddle point and their neighborhood such that
λmin(∇2F(X )) < 0, denoted as R1

• Identify the global minimum, their neighborhood, and the directions
such that λmin(∇2F(X )) > 0, denoted as R2

• Verify that the gradient has a sufficiently large norm outside the
regions described in (p2) and (p3), denoted as R3

=⇒ Iterative algorithms DO NOT converge to saddle point, e.g. first
order methods (Ge et al., 2015) and second order methods (Sun et al., 2016).
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Low-Rank Matrix Factorization: Rank-1 Case

Theorem

Consider minx∈Rn F(x), where F(x) = 1
4 ||M∗ − xx>||2F. Define

R1
4
=
{
y ∈ Rn | ||y ||2 ≤ 1

2 ||u||2
}
,

R2
4
=
{
y ∈ Rn | ||y − u||2 ≤ 1

8 ||u||2
}
, and

R3
4
=
{
y ∈ Rd | ||y ||2 > 1

2 ||u||2, ||y − u||2 > 1
8 ||u||2

}
.

Then the following properties hold.

• x = 0, u and −u are the only stationary points of F(x).

• x = 0 is a strict saddle point with λmin(∇2F(0)) = −||u||22.
Moreover, for any x ∈ R1, λmin(∇2F(x)) ≤ − 1

2 ||u||22.

• For x = ±u, x is a global minimum with λmin(F(x)) = ||u||22.
Moreover, for any x ∈ R2, λmin(∇2F(x)) ≥ 1

5 ||u||22.

• For any x ∈ R3, we have ||∇F(x)||2 > ||u||32
8 .
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Low-Rank Matrix Factorization: Rank-r Case

Introduce two sets:

X =
{
X = ΦΣ2Θ2 | U = ΦΣ1Θ1(SVD), (Σ2

2 − Σ2
1)Σ2 = 0,Θ2 ∈ Or

}
,

U = {X ∈ X | Σ2 = Σ1} .

Theorem

Consider minX∈Rn×r F(X ), where F(X ) = 1
4 ||M∗ − XX>||2F for r ≥ 1.

Define

R1
4
=
{
Y ∈ Rn×r | σr (Y ) ≤ 1

2σr (U), ‖YY>‖F ≤ 4‖M∗‖F
}
,

R2
4
=
{
Y ∈ Rn×r | minΨ∈Or ||Y − UΨ||2 ≤ σ2

r (U)
8σ1(U)

}
,

R′3
4
=
{
Y ∈ Rn×r | σr (Y ) > 1

2σr (U), minΨ∈Or ||Y − UΨ||2 > σ2
r (U)

8σ1(U) ,

‖YY>‖F ≤ 4‖M∗‖F
}
, and

R′′3
4
=
{
Y ∈ Rn×r | ‖YY>‖F > 4‖M∗‖F

}
.
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Low-Rank Matrix Factorization: Rank-r Case

Theorem (Continued...)

Then the following properties hold.

• ∀X ∈ X , X is a stationary point of F(X ).

• ∀X ∈ X\U , X is a strict saddle point with
λmin(∇2F(X )) ≤ −λ2

max(Σ1 − Σ2). Moreover, for any X ∈ R1,

∇2F(X ), λmin(∇2F(X )) ≤ −σ
2
r (U)
4 .

• ∀X ∈ U , X is a global minimum of F(X ) with nonzero
λmin(∇2F(X )) ≥ σ2

r (U) (r(r − 1)/2 zero eigenvalues). Moreover,
∀X ∈ R2, z>∇2F(X )z ≥ 1

5σ
2
r (U)||z ||22, ∀z ⊥ E , where E ⊆ Rn×r is

a subspace spanned by eigenvectors of ∇2F(KE ) with negative

eigenvalues, E = X − UΨX , and KE
4
=


E(∗,1)E

>
(∗,1) E(∗,2)E

>
(∗,1) · · · E(∗,r)E

>
(∗,1)

E(∗,1)E
>
(∗,2) E(∗,2)E

>
(∗,2) · · · E(∗,r)E

>
(∗,2)

...
...

. . .
...

E(∗,1)E
>
(∗,r) E(∗,2)E

>
(∗,r) · · · E(∗,r)E

>
(∗,r)

.

• ∀X ∈ R′3, ||∇F(X )||F > σ4
r (U)

9σ1(U) and ∀X ∈ R′′3 , ‖∇F(X )‖F > 3
4σ

3
1(X ).
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Geometric Interpretation

r = 1

x(1)

x(2) F(x)

x(1)

x(2)

F(x)

r = 2

X(1,1)

X(1,2) F(X)

X(1,1)

X(1,2)

F(X)

Figure: In the case r = 1, the true model is u = [1 − 1]>. In the case
r = 2, the true model is U = [1 − 1].
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Extensions

: General Rectangular Matrix: we have M∗ = UV> and solve

min
X∈Rn×r ,Y∈Rm×r

Fλ(X ,Y ) =
1

8
||XY> −M∗||2F +

λ

4
||X>X − Y>Y ||2F
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: General Rectangular Matrix: we have M∗ = UV> and solve

min
X∈Rn×r ,Y∈Rm×r

Fλ(X ,Y ) =
1

8
||XY> −M∗||2F +

λ

4
||X>X − Y>Y ||2F

x

y

F(x, y)

x

y

F�(x, y)

F(x , y) Fλ(x , y)

Figure: r = 1, the true model is u = v = 1.
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Extensions

: General Rectangular Matrix: we have M∗ = UV> and solve

min
X∈Rn×r ,Y∈Rm×r

Fλ(X ,Y ) =
1

8
||XY> −M∗||2F +

λ

4
||X>X − Y>Y ||2F

: Matrix Sensing: we observe y(i) = 〈Ai ,M
∗〉+ z(i) for all i ∈ [d ],

{z(i)}di=1 are noise, and solve

min
X

F (X ) =
1

4d

d∑
i=1

(yi − 〈Ai ,XX
>〉)2
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Extensions

: General Rectangular Matrix: we have M∗ = UV> and solve

min
X∈Rn×r ,Y∈Rm×r

Fλ(X ,Y ) =
1

8
||XY> −M∗||2F +

λ

4
||X>X − Y>Y ||2F

: Matrix Sensing: we observe y(i) = 〈Ai ,M
∗〉+ z(i) for all i ∈ [d ],

{z(i)}di=1 are noise, and solve

min
X

F (X ) =
1

4d

d∑
i=1

(yi − 〈Ai ,XX
>〉)2

: Matrix Completion ...

=⇒ Analogous geometric properties to those of low-rank matrix
factorization.
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Implication to Convergence Analysis

Direct result of convergence guarantees:

: First order methods:

• Gradient descent: Asymptotic convergence guarantee of Q-linear
convergence to a local minimum (Lee et al., 2016; Panageas and Piliouras, 2016)

• Noisy stochastic gradient descent: R-sublinear convergence to a local
minimum (Ge et al., 2015)

: Second order methods:

• Trust-region methods: R-quadratic convergence to a global minimum
(Sun et al., 2016)

• Second-order majorization: Sublinear convergence guarantee (Carmon &

Duchi, 2016)
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Extension to Nonconvex Constrained Optimization

: Consider the generalized eigenvalue decomposition (GEV) problem:

min
X∈Rd×r

F(X ) = − tr(X>AX ) subject to X>BX = Ir

• Apply the method of Lagrange multipliers,

min
X

max
Y
L(X ,Y ) = − tr(X>AX ) + 〈Y ,X>BX − Ir 〉

• The gradient of Lagrangian function:

∇L ,

[
∇XL(X ,Y )
∇YL(X ,Y )

]
=

[
2BXY − 2AX
X>BX − Ir

]
.

• At a stationary point, the dual variable satisfies

Y = D(X ) , X>AX
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Adaptation of Definition

Definition

Given the Lagrangian function L(X ,Y ), a pair of point (X ,Y ) is called:

• A stationary point of L(X ,Y ), if ∇L = 0

• An unstable stationary point of L(X ,Y ), if (X ,Y ) is a stationary
point and for any neighborhood B ⊆ Rd×r of X , there exist
X1,X2 ∈ B such that

L(X1,Y )|Y=D(X1) ≤ L(X ,Y )|Y=D(X ) ≤ L(X2,Y )|Y=D(X2),

and λmin(∇2
XL(X ,Y )|Y=D(X )) ≤ 0

• A convex-concave saddle point, or a minimax point of L(X ,Y ),
if (X ,Y ) is a stationary point and (X ,Y ) is a global optimum, i.e.

(X ,Y ) = arg min
X̃

max
Ỹ
L(X̃ , Ỹ ).
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Characterization of Stationary Point

: Consider nonsingular B:

Let the eigendecomposition be B−1/2AB−1/2 = O†Λ†(O†)>. Consider the
following decomposition:

US =
{
U ∈ Rd×s : U = O†:,S ,S ⊆ [r ] with |S| = s ≤ r

}
,

VS̃ =
{
V ∈ Rd×(r−s) : V = O†

:,S̃ , S̃ ⊆ [d ]\[r ] with |S̃| = r − s, |S| = s ≤ r
}
.

Theorem (Symmetry Property)

Suppose that A and B are symmetric and B is nonsingular. Then
(X ,D(X )) is a stationary is a stationary point of L(X ,Y ), i.e., ∇L = 0, if
and only if X = B−1/2X̃ for any X̃ ∈ GUS (V ) with any V ∈ VS̃ , where
GUS (V ) = {gU : gUS (V ) = g(U ⊕ V ), g ∈ G,U ∈ US}.
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Unstable Stationary vs. Saddle Point

The GEV problem reduces to

X̃ ∗ = argmin
X̃∈Rd×r

− tr(X̃>ÃX̃ ) s.t. X̃>X̃ = Ir ,

where X̃ = B1/2X and Ã = B−1/2AB−1/2.

Lemma

Let X = B−1/2X̃ for any X̃ ∈ GUS (V ) and any V ∈ VS̃ with S ⊆ [r ]. If

S = [r ] and S̃ = ∅, then (X ,D(X )) is a saddle point of the min-max
problem. Otherwise, if S ⊂ [r ] and S̃ ⊆ [d ]\[r ], S̃ 6= ∅, with |S|+ |S̃| = r ,
then (X ,D(X )) is an unstable stationary point with

λmin(HX ) ≤
2
(
λ†

maxS∪S̃ − λ
†
minS⊥∩S̃⊥

)
‖X:,minS⊥∩S̃⊥‖2

2

and λmax(HX ) ≥
4λ†

minS∪S̃
‖X:,minS∪S̃‖2

2

,

where λ†maxS (λ†minS) is the smallest (largest) eigenvalue of B−1/2AB−1/2

indexed by a set S.
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Extension and Algorithm

: Extension to Singular B

• Use generalized inverse, much more involved

: An asymptotic sublinear convergence of online optimization

• Simple update: X (k+1) ← X (k) − η
(
B(k)X (k)X (k)> − Id

)
A(k)X (k)

• Characterization using stochastic differential equation (SDE)

Thank you !
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