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salient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

• object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

• image matching

(Oxford Visual Geometry Group)

• visual surveillance

(Multimedia Lab, Chinese University of Hong Kong)

• many more...
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prior works

Bottom-up method: data-driven

• Contrast based: local contrast, global contrast (Itti et al. 1998, Achanta et al. 2009)

• Prior based: shape, location, background prior (Xie et al. 2013, Yang et al. 2013)

• Compressive Sensing based: low-rank homogeneous background + sparse
salient foreground (Lang et al. 2012, Shen et al. 2013)

...
Top-down method: task dependent / goal driven

• Supervised learning (Liu et al. 2007)

• Dictionary learning (Yang et al. 2012)

...

Drawback ! FULL imaging is required for feature/prior info. extraction.
Can be prohibitive in some applications, e.g., gigapixel photos.
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our prior effort (Li & Haupt, IEEE Trans. Sig. Proc. 63(7) pp. 1792-1807, April 2015)

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity):
treat salient features as outliers.

M = L + C

(Outlier Columns)

image patches
vectorized−→ columns of M

• A two-step approach: assume matrices M ∈ Rn1×n2 admit a decomposition

M = L︸︷︷︸
rank r

+ C︸︷︷︸
k-column sparse

(“inlier” vectors) 

(“outlier” vector) 

Step 1 – dimension reduction: Y(1) = ΦMS (m × γn2)

convex demixing: argminL,C ‖L‖∗ + λ‖C‖1,2 s.t. Y(1) = L + C

Step 2 – orthogonal projection: y(2) = φ PL̂⊥
(1)
ΦMAT (1× p)

sparse inference: solve ĉ = argminc ‖cj‖1 s.t. y(2) = cAT

• Theoretical guarantee: mγn2 + p = O
(
r 2 log r + k log(n2)

)
samples are

sufficient for exact outlier identification w.h.p. (under structural assumptions)
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sparse inference: solve ĉ = argminc ‖cj‖1 s.t. y(2) = cAT

• Theoretical guarantee: mγn2 + p = O
(
r 2 log r + k log(n2)

)
samples are

sufficient for exact outlier identification w.h.p. (under structural assumptions)



Background Approach Analysis Performance Conclusions Extras

our prior effort (Li & Haupt, IEEE Trans. Sig. Proc. 63(7) pp. 1792-1807, April 2015)

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity):
treat salient features as outliers.

M = L + C

(Outlier Columns)

image patches
vectorized−→ columns of M

• A two-step approach: assume matrices M ∈ Rn1×n2 admit a decomposition

M = L︸︷︷︸
rank r

+ C︸︷︷︸
k-column sparse

(“inlier” vectors) 

(“outlier” vector) 

Step 1 – dimension reduction: Y(1) = ΦMS (m × γn2)

convex demixing: argminL,C ‖L‖∗ + λ‖C‖1,2 s.t. Y(1) = L + C

Step 2 – orthogonal projection: y(2) = φ PL̂⊥
(1)
ΦMAT (1× p)
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sparse inference: solve ĉ = argminc ‖cj‖1 s.t. y(2) = cAT

• Theoretical guarantee: mγn2 + p = O
(
r 2 log r + k log(n2)

)
samples are

sufficient for exact outlier identification w.h.p. (under structural assumptions)



Background Approach Analysis Performance Conclusions Extras

our prior effort (Li & Haupt, IEEE Trans. Sig. Proc. 63(7) pp. 1792-1807, April 2015)

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity):
treat salient features as outliers.

M = L + C

(Outlier Columns)

image patches
vectorized−→ columns of M

• A two-step approach: assume matrices M ∈ Rn1×n2 admit a decomposition

M = L︸︷︷︸
rank r

+ C︸︷︷︸
k-column sparse

(“inlier” vectors) 

(“outlier” vector) 

Step 1 – dimension reduction: Y(1) = ΦMS (m × γn2)

convex demixing: argminL,C ‖L‖∗ + λ‖C‖1,2 s.t. Y(1) = L + C

Step 2 – orthogonal projection: y(2) = φ PL̂⊥
(1)
ΦMAT (1× p)
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Group Adaptive Compressive Sensing
(GACS) for Salient Features
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“group” features

Salient features may be “grouped” in the pixel space

M = L + C

(Outlier Columns)

“group features” “group outliers” 
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a two-step approach (step 1)

Collect Measurements: Y(1) := ΦMS = Φ(L + C)S where

• Φ ∈ Rm×n1 is a (random) measurement matrix (m < n)

• For γ ∈ (0, 1), S is a column sub matrix of identity with ≈ γn2 columns
(rows sampled iid from a Bernoulli(γ) model)

M = L+C

�M = �L+�C

�MS
Observations
(Step 1)

Outlier Columns

Apply Outlier Pursuit (Xu et al. 2012) to “pocket-sized” data ΦMS
(Idea: identify span of ΦL. Same 1st step as previous work)
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a two-step approach (step 2)

Collect measurements y(2) := φ PL̂⊥
(1)
ΦMAT where

• Φ ∈ Rm×n1 is same (random) measurement matrix as in step 1,

• L̂(1) is the linear subspace spanned by col’s of L̂(1) (learned in step 1)

• PL̂(1)
is orthogonal projector onto L̂(1), and PL̂⊥

(1)
, I− PL̂(1)

• φ ∈ R1×m a random vector, A ∈ Rp×n2 a random matrix

�M = �L+�C

M = L+C

Observations (Step 2)

(when “demixing” from step 1 succeeds)P bL?�M

�P bL?�M

�P bL?�MAT
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a two-step approach (step 2)

�M = �L+�C

M = L+C

Observations (Step 2)

(when “demixing” from step 1 succeeds)P bL?�M

�P bL?�M

�P bL?�MAT

Solve ĉ = argminc

∑J
j=1 ‖cj‖2 s.t. y(2) = cAT

• group sparsity extension of previous work

• ∑J
j=1 ‖cj‖2 is a group norm

• J is the number of groups

• cj ∈ RB is a subvector of c ∈ Rn2 , with B = n2/J as the size of each group

• support(ĉ) , {i : ĉi 6= 0} is the estimate for outlier locations
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Performance Analysis
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structural “identifiability” assumptions

Def’n: (Column Incoherence Property)

Matrix L ∈ Rn1×n2 with nL ≤ n2 nonzero columns, rank r , and compact SVD
L = UΣV∗ is said to satisfy the column incoherence property with parameter µL if

max
i
‖V∗ei‖2

2 ≤ µL
r

nL
,

where {ei} are basis vectors of the canonical basis for Rn2 .

(small µL precludes subspaces L defined by single col’s of L; an assumption that guarantees identifiability of {L, C})

Graphically:

L 
Σ	



U 
V* =
. . .(squared) `2 norms

µL =

nL

r
max

i
kV⇤eik22 2

h
1,

nL

r

i
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provable recovery

Structural conditions: (Xu et al. 2012)

Suppose components L and C satisfy the structural conditions: (1) rank(L) = r , (2) L
has nL ≤ n2 nonzero columns, (3) L satisfies the column incoherence property with
parameter µL, and (4) |IC| = k.

Theorem: (Li & Haupt, GlobalSIP, 2015)

For any δ ∈ (0, 1), take
k ≤ n2/(c1rµL), γ ≥ c2rµL log r/nL,

m ≥ c3(r + log k), p ≥ c4

(
k + (k/

√
B) log((n2 − k)/B)

)
.

let φ have elements drawn iid from any continuous distribution, and take the outlier
pursuit reg. parameter λ = 3

7
√

kub
, where kub is any upper bound of k. The following

hold simultaneously w.p. ≥ 1− 3δ: the support estimate produced by our method is
correct, and the no. of obs. is no greater than

(3/2)γmn2 + p︸ ︷︷ ︸
as few as O((r+log k)(µLr log r)+k+ k√

B
log

n2
B

)



Background Approach Analysis Performance Conclusions Extras

Experimental Results
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grouping effect

Recall: vectorize (non-overlap) image
patches into columns of M

M = L + C

(Outlier Columns)

“group features” “group outliers” 

Advantage of grouping features: lower sample demands

O((r + log k)(µLr log r) + k + k√
B

log n2−k
B

) vs.

O((r + log k)(µLr log r) + k log n2
k

)

(a) (b) (c) (d) (e)

Detection results with the grouping effect. (a) original images; (b) ground truth; detection result (c) w/o grouping
(B = 1) and with grouping effects; (d) B = 2; and (e) B = 3. Sampling rate: 2.5% (γ = 0.2, m = 0.1n1 and p =
0.5n2).
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low-level image features

Each step of our two-step process obtains linear measurements of the image pixels.

⇒ Can incorporate any linear “preprocessing” (e.g., filtering) into the overall
measurement model at the feature acquisition stage.

(a) (b) (c) (d) (e) (f) (g) (h)

Gray scale (maginitude of entries of ĉ) saliency map estimation.(a) original images; (b) ground truth; (c)-(e) RGB
planes individually; filtered intensity images with (f) Laplacian of Gaussian filter, (g) Horizontal Edge filter and (h)
Vertical Edge filter. Sampling rate: 4.5% (γ = 0.2, m = 0.2n1, p = 0.5n2, n1 = 100 and n2 = 1200)
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comparisons w/existing saliency detection methods

State-of-the-art methods:

• spectral residual (SR) (Hou & Zhang 2007)

• self-resemblance (SeR) (Seo & Milanfar 2009)

• global based (GB) (Harel et al. 2006)

• frequency tuned (FT) (Achanta et al. 2009)

• spatially weighted dissimilarity (SWD) (Duan et al. 2011)

• low rank (LR) (Shen & Wu 2012)

• region contract (RC) (Cheng et al. 2014)

Database: MSRA10K (Cheng et al. 2014)
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comparisons w/existing saliency detection methods

Orig. Ground SR SeR GB FT SWD LR RC Ours

Truth

Detection results for the MSRA10K Salient Object Database for various methods. For our approach, the results
correspond to G, LoG, I, and R respectively from top to bottom. Sampling rate: 2.5% on average.
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comparisons w/existing saliency detection methods

More results:

• Precision: P = TP
TP+FP

, TP: true positive, FP: false positive

• Recall: R = TP
TP+FN

, FN: false negative

• F-measure = maxP,R
(β2+1)P·R
(β2P+R)

, β2 = 0.3

0 0.2 0.4 0.6 0.8 1
0.2

0.4
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1

RC

LR

SWD

FT

ACS
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SR
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0
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0.4

0.6

0.8

1
Precision

Recall

F-measure
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(a) Precision-Recall curve (b) F-measure



Background Approach Analysis Performance Conclusions Extras

Conclusions
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final comments

Direct saliency localization is possible (w/o full imaging)

• Low sample complexity

• Low computational complexity

Extensions under examination:

• Non-linear “post-processing” of image features

• Observation with missing data

Current investigation:

• Seek known patterns embedded in unknown backgrounds (Where’s Waldo?)

• Stability analyses (e.g., in noisy settings or when data are missing or both)

Techniques like GACS may become increasingly IMPORTANT when data
becomes bigger and bigger!
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thanks!

Advisor/Coauthor: Prof. Jarvis Haupt

Research Support:
NSF Award No. CCF-1217751 (Exploiting Saliency in Compressive and Adaptive Sensing)

Thanks!
lixx1661@umn.edu

http://www.tc.umn.edu/~lixx1661/

http://www.tc.umn.edu/~lixx1661/
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non-linear “post-processing”

Further exploration of feature extraction, e.g., “stacked HSI”
(RGB to HSI on the compressed data ΦM)

Overall procedure of feature acquisition, up to ΦM, is still linear

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Gray scale (maginitude of entries of ĉ) saliency map estimation. (a) original images; (b) ground truth; (c)-(e) RGB
planes; (f)-(h) stacked HSI individually; filtered intensity images with (i) Laplacian of Gaussian filter, (j) Horizontal
Edge filter and (k) Vertical Edge filter. Sampling rate: 4.5% (γ = 0.2, m = 0.2n1, p = 0.5n2, n1 = 100 and
n2 = 1200)



Background Approach Analysis Performance Conclusions Extras

non-linear “post-processing”

Further exploration of feature extraction, e.g., “stacked HSI”
(RGB to HSI on the compressed data ΦM)

Overall procedure of feature acquisition, up to ΦM, is still linear

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
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