Locating Salient Group-Structured Image Features via Adaptive Compressive Sampling

Xingguo Li

Department of Electrical and Computer Engineering
University of Minnesota
Advisor: Prof. Jarvis Haupt

GlobalSIP December 14, 2015

Background

•000

Background and Motivation

Extras

salient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

foreground segmentation

(AI & CV Lab., Seoul National University)

image matching

(Oxford Visual Geometry Group)

many more...

object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

visual surveillance

(Multimedia Lab, Chinese University of Hong Kong)

prior works

Bottom-up method: data-driven

- Contrast based: local contrast, global contrast (Itti et al. 1998, Achanta et al. 2009)
- Prior based: shape, location, background prior (Xie et al. 2013, Yang et al. 2013)
- Compressive Sensing based: low-rank homogeneous background + sparse salient foreground (Lang et al. 2012, Shen et al. 2013)

÷

Top-down method: task dependent / goal driven

- Supervised learning (Liu et al. 2007)
- Dictionary learning (Yang et al. 2012)

:

prior works

Bottom-up method: data-driven

- Contrast based: local contrast, global contrast (Itti et al. 1998, Achanta et al. 2009)
- Prior based: shape, location, background prior (Xie et al. 2013, Yang et al. 2013)
- Compressive Sensing based: low-rank homogeneous background + sparse salient foreground (Lang et al. 2012, Shen et al. 2013)

:

Top-down method: task dependent / goal driven

- Supervised learning (Liu et al. 2007)
- Dictionary learning (Yang et al. 2012)

ŧ

Drawback! **FULL** imaging is required for feature/prior info. extraction. Can be prohibitive in some applications, e.g., gigapixel photos.

Background

000

our prior effort (Li & Haupt, IEEE Trans. Sig. Proc. 63(7) pp. 1792-1807, April 2015)

 $\label{eq:Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)} Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)$

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity): treat salient features as *outliers*.

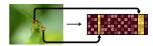


image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of \boldsymbol{M}

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity): treat salient features as *outliers*.

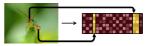


image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of **M**

ullet A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

$$M = \underbrace{L}_{\text{rank } r} + \underbrace{C}_{k\text{-column sparse}}$$

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity): treat salient features as *outliers*.

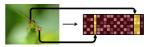
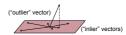


image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of **M**

ullet A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

$$M = \underbrace{L}_{\text{rank } r} + \underbrace{C}_{k\text{-column sparse}}$$



Step 1 – dimension reduction:
$$\mathbf{Y}_{(1)} = \Phi \mathbf{MS} \quad (m \times \gamma n_2)$$

convex demixing: $\operatorname{argmin}_{\mathbf{L},\mathbf{C}} \|\mathbf{L}\|_* + \lambda \|\mathbf{C}\|_{1,2} \quad \text{s.t. } \mathbf{Y}_{(1)} = \mathbf{L} + \mathbf{C}$

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity): treat salient features as *outliers*.

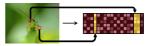
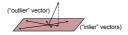


image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of M

ullet A two-step approach: assume matrices $oldsymbol{M} \in \mathbb{R}^{n_1 imes n_2}$ admit a decomposition

$$M = \underbrace{L}_{\text{rank } r} + \underbrace{C}_{k\text{-column sparse}}$$



Step 2 – orthogonal projection:
$$\mathbf{y}_{(2)} = \boldsymbol{\phi} \ \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \boldsymbol{\Phi} \mathbf{M} \mathbf{A}^{T} \ (1 \times p)$$
sparse inference: solve $\widehat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \|\mathbf{c}_{i}\|_{1}$ s.t. $\mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^{T}$

Key idea: locate salient features w/o fully imaging/reconstructing (bottom-up)

• Raw image features (RGB or intensity): treat salient features as *outliers*.

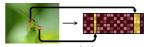
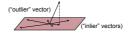


image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of $\mathbf M$

ullet A two-step approach: assume matrices $oldsymbol{\mathsf{M}} \in \mathbb{R}^{n_1 imes n_2}$ admit a decomposition

$$\mathbf{M} = \underbrace{\mathbf{L}}_{\text{rank } r} + \underbrace{\mathbf{C}}_{k\text{-column sparse}}$$



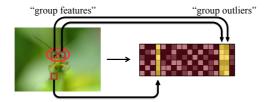
Step 2 – orthogonal projection:
$$\mathbf{y}_{(2)} = \boldsymbol{\phi} \ \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \boldsymbol{\Phi} \mathbf{M} \mathbf{A}^{T} \ (1 \times p)$$
sparse inference: solve $\widehat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \|\mathbf{c}_{i}\|_{1}$ s.t. $\mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^{T}$

• Theoretical guarantee: $m\gamma n_2 + p = \mathcal{O}\left(r^2 \log r + k \log(n_2)\right)$ samples are sufficient for exact outlier identification w.h.p. (under structural assumptions)

Group Adaptive Compressive Sensing (GACS) for Salient Features

"group" features

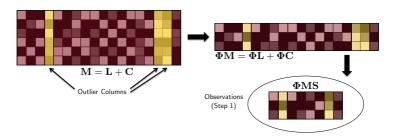
Salient features may be "grouped" in the pixel space



a two-step approach (step 1)

Collect Measurements: $\mathbf{Y}_{(1)} := \Phi \mathbf{MS} = \Phi(\mathbf{L} + \mathbf{C})\mathbf{S}$ where

- ullet $\Phi \in \mathbb{R}^{m imes n_1}$ is a (random) measurement matrix (m < n)
- For $\gamma \in (0,1)$, **S** is a column sub matrix of identity with $\approx \gamma n_2$ columns (rows sampled iid from a Bernoulli(γ) model)

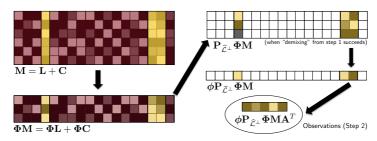


Apply Outlier Pursuit (x_u et al. 2012) to "pocket-sized" data ΦMS (Idea: identify span of ΦL . Same 1st step as previous work)

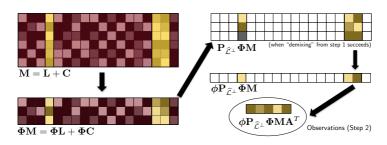
a two-step approach (step 2)

Collect measurements $\mathbf{y}_{(2)} := \phi \ \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \mathbf{\Phi} \mathbf{M} \mathbf{A}^{\mathsf{T}}$ where

- ullet $\Phi \in \mathbb{R}^{m imes n_1}$ is same (random) measurement matrix as in step 1,
- $\widehat{\mathcal{L}}_{(1)}$ is the linear subspace spanned by col's of $\widehat{\mathbf{L}}_{(1)}$ (learned in step 1)
- $\bullet \ \ P_{\widehat{\mathcal{L}}_{(1)}} \text{ is orthogonal projector onto } \widehat{\mathcal{L}}_{(1)} \text{, and } P_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \triangleq \mathbf{I} P_{\widehat{\mathcal{L}}_{(1)}}$
- $oldsymbol{\phi} \in \mathbb{R}^{1 imes m}$ a random vector, $oldsymbol{A} \in \mathbb{R}^{p imes n_2}$ a random matrix



a two-step approach (step 2)



Solve
$$\widehat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \sum_{j=1}^{J} \|\mathbf{c}_j\|_2$$
 s.t. $\mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^T$

- group sparsity extension of previous work
- $\sum_{j=1}^{J} \|\mathbf{c}_j\|_2$ is a group norm
- *J* is the number of groups
- $\mathbf{c}_j \in \mathbb{R}^B$ is a subvector of $\mathbf{c} \in \mathbb{R}^{n_2}$, with $B = n_2/J$ as the size of each group
- support($\hat{\mathbf{c}}$) $\triangleq \{i : \hat{\mathbf{c}}_i \neq 0\}$ is the estimate for outlier locations

Performance Analysis

structural "identifiability" assumptions

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_1 \times n_2}$ with $n_{\mathbf{L}} \leq n_2$ nonzero columns, rank r, and compact SVD $L = U\Sigma V^*$ is said to satisfy the *column incoherence property* with parameter μ_1 if

$$\max_{i} \|\mathbf{V}^* \mathbf{e}_i\|_2^2 \le \mu_{\mathbf{L}} \frac{r}{n_{\mathbf{L}}},$$

where $\{\mathbf{e}_i\}$ are basis vectors of the canonical basis for \mathbb{R}^{n_2} .

(small μ_1 precludes subspaces \mathcal{L} defined by single col's of L; an assumption that guarantees identifiability of $\{L, C\}$)

structural "identifiability" assumptions

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_1 \times n_2}$ with $n_{\mathbf{L}} \leq n_2$ nonzero columns, rank r, and compact SVD $\mathbf{L} = \mathbf{U} \Sigma \mathbf{V}^*$ is said to satisfy the *column incoherence property* with parameter $\mu_{\mathbf{L}}$ if

$$\max_{i} \|\mathbf{V}^* \mathbf{e}_i\|_2^2 \leq \mu_{\mathbf{L}} \frac{r}{n_{\mathbf{L}}},$$

where $\{\mathbf{e}_i\}$ are basis vectors of the canonical basis for \mathbb{R}^{n_2} .

(small μ_L precludes subspaces $\mathcal L$ defined by single col's of L; an assumption that guarantees identifiability of $\{L,C\}$)

Graphically:

provable recovery

Structural conditions: (Xu et al. 2012)

Suppose components L and C satisfy the structural conditions: (1) $\operatorname{rank}(\mathbf{L}) = r$, (2) L has $n_{\mathbf{L}} \leq n_2$ nonzero columns, (3) L satisfies the *column incoherence property* with parameter $\mu_{\mathbf{L}}$, and (4) $|\mathcal{I}_{\mathbf{C}}| = k$.

Theorem: (Li & Haupt, GlobalSIP, 2015)

For any
$$\delta \in (0,1)$$
, take
$$k \leq n_2/(c_1r\mu_{\mathbf{L}}), \qquad \gamma \geq c_2r\mu_{\mathbf{L}}\log r/n_{\mathbf{L}},$$

$$m \geq c_3(r+\log k), \quad p \geq c_4\left(k+(k/\sqrt{B})\log((n_2-k)/B)\right).$$

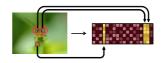
let ϕ have elements drawn iid from any continuous distribution, and take the outlier pursuit reg. parameter $\lambda=\frac{3}{7\sqrt{k_{\mathrm{ub}}}}$, where k_{ub} is any upper bound of k. The following hold simultaneously w.p. $\geq 1-3\delta$: the support estimate produced by our method is correct, and the no. of obs. is no greater than

$$\underbrace{(3/2)\gamma mn_2 + p}_{\text{as few as } \mathcal{O}((r + \log k)(\mu_{\mathsf{L}} r \log r) + k + \frac{k}{\sqrt{B}} \log \frac{n_2}{B})}$$

Experimental Results

grouping effect

Recall: vectorize (non-overlap) image patches into columns of ${\bf M}$



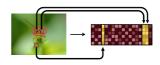
Advantage of grouping features: lower sample demands

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}} r \log r) + k + \frac{k}{\sqrt{B}} \log \frac{n_2 - k}{B}) \text{ vs.}$$

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}} r \log r) + k \log \frac{n_2}{k})$$

grouping effect

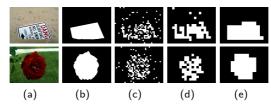
Recall: vectorize (non-overlap) image patches into columns of **M**



Advantage of grouping features: lower sample demands

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}} r \log r) + k + \frac{k}{\sqrt{B}} \log \frac{n_2 - k}{B}) \text{ vs.}$$

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}} r \log r) + k \log \frac{n_2}{k})$$



Detection results with the grouping effect. (a) original images; (b) ground truth; detection result (c) w/o grouping (B=1) and with grouping effects; (d) B=2; and (e) B=3. Sampling rate: 2.5% ($\gamma=0.2, m=0.1n_1$ and $p=0.5n_2$).

low-level image features

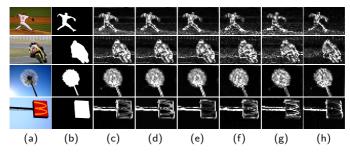
Each step of our two-step process obtains linear measurements of the image pixels.

 \Rightarrow Can incorporate any linear "preprocessing" (e.g., filtering) into the overall measurement model at the feature acquisition stage.

low-level image features

Each step of our two-step process obtains linear measurements of the image pixels.

 \Rightarrow Can incorporate any linear "preprocessing" (e.g., filtering) into the overall measurement model at the feature acquisition stage.



Gray scale (maginitude of entries of \hat{c}) saliency map estimation.(a) original images; (b) ground truth; (c)-(e) RGB planes individually; filtered intensity images with (f) Laplacian of Gaussian filter, (g) Horizontal Edge filter and (h) Vertical Edge filter. Sampling rate: 4.5% ($\gamma=0.2$, $m=0.2n_1$, $p=0.5n_2$, $n_1=100$ and $n_2=1200$)

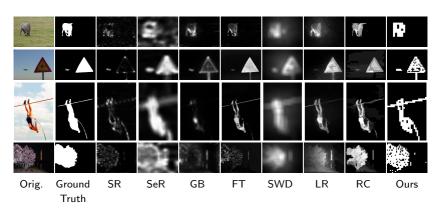
comparisons w/existing saliency detection methods

State-of-the-art methods:

- spectral residual (SR) (Hou & Zhang 2007)
- self-resemblance (SeR) (Seo & Milanfar 2009)
- global based (GB) (Harel et al. 2006)
- frequency tuned (FT) (Achanta et al. 2009)
- spatially weighted dissimilarity (SWD) (Duan et al. 2011)
- low rank (LR) (Shen & Wu 2012)
- region contract (RC) (Cheng et al. 2014)

Database: MSRA10K (Cheng et al. 2014)

comparisons w/existing saliency detection methods

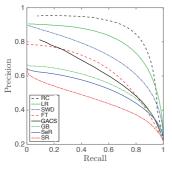


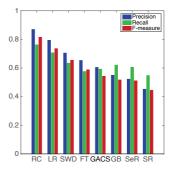
Detection results for the MSRA10K Salient Object Database for various methods. For our approach, the results correspond to G, LoG, I, and R respectively from top to bottom. Sampling rate: 2.5% on average.

comparisons w/existing saliency detection methods

More results:

- Precision: $P = \frac{TP}{TP + FP}$, TP: true positive, FP: false positive
- Recall: $R = \frac{TP}{TP + FN}$, FN: false negative
- F-measure = $\max_{P,R} \frac{(\beta^2+1)P \cdot R}{(\beta^2P+R)}$, $\beta^2 = 0.3$





(a) Precision-Recall curve

(b) F-measure

Conclusions

final comments

Direct saliency localization is possible (w/o full imaging)

- Low sample complexity
- Low computational complexity

Extensions under examination:

- Non-linear "post-processing" of image features
- Observation with missing data

Current investigation:

- Seek known patterns embedded in unknown backgrounds (Where's Waldo?)
- Stability analyses (e.g., in noisy settings or when data are missing or both)

Techniques like GACS may become increasingly **IMPORTANT** when data becomes bigger and bigger!

thanks!

Advisor/Coauthor: Prof. Jarvis Haupt

Research Support:

NSF Award No. CCF-1217751 (Exploiting Saliency in Compressive and Adaptive Sensing)

Thanks!

lixx1661@umn.edu
http://www.tc.umn.edu/~lixx1661/

Extra Slides

non-linear "post-processing"

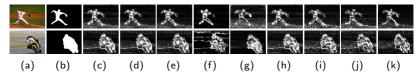
Further exploration of feature extraction, e.g., "stacked HSI" $\left(\text{RGB to HSI on the compressed data } \Phi \mathbf{M} \right)$

Overall procedure of feature acquisition, up to ΦM , is still linear

non-linear "post-processing"

Further exploration of feature extraction, e.g., "stacked HSI" $(\text{RGB to HSI on the compressed data }\Phi \mathbf{M})$

Overall procedure of feature acquisition, up to ΦM , is still linear



Gray scale (maginitude of entries of $\hat{\mathbf{c}}$) saliency map estimation. (a) original images; (b) ground truth; (c)-(e) RGB planes; (f)-(h) stacked HSI individually; filtered intensity images with (i) Laplacian of Gaussian filter, (j) Horizontal Edge filter and (k) Vertical Edge filter. Sampling rate: 4.5% ($\gamma=0.2, m=0.2n_1, p=0.5n_2, n_1=100$ and $n_2=1200$)

Extras