Stochastic Variance Reduced Optimization for Nonconvex Sparse Learning

Xingguo Li*

Joint work with Tuo Zhao[†], Raman Arora[†], Han Liu[‡], and Jarvis Haupt^{*}

*University of Minnesota $\ ^{\dagger}$ Johns Hopkins University $\ ^{\dagger}$ Princeton University

JHU, July 20, 2016

Overview	Computational Theory	Statistical Theory	Experiments
●0000000000	O	O	000000000
Background			

Consider a Sparse Linear Model:

 $\mathbf{y} = \mathbf{A} \mathbf{\theta}^* + \mathbf{z}, \ \mathbf{y} \in \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{n \times d}$

 $\| oldsymbol{ heta}^* \|_0 \leq k^* < n \ll d$, z $\sim \mathcal{N}(oldsymbol{0}, \sigma^2 oldsymbol{I})$

•0000000000	0	O	00000000
Background			

Consider a Sparse Linear Model:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\theta}^* + \mathbf{z}, \ \mathbf{y} \in \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{n \times d}$$

 $\|oldsymbol{ heta}^*\|_0 \leq k^* < n \ll d$, z $\sim \mathcal{N}(oldsymbol{0},\sigma^2oldsymbol{\mathsf{I}})$

Consider the nonconvex sparse learning problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \mathcal{F}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{\theta}) \quad \text{subject to } ||\boldsymbol{\theta}||_0 \leq k,$$

 $\mathcal{F}(\boldsymbol{\theta})$: Empirical risk – smooth and nonstrongly convex. Example: $f_i(\boldsymbol{\theta}) = \frac{1}{b} \|\mathbf{y}_i - \mathbf{A}_i \boldsymbol{\theta}\|_2^2$ for Sparse Linear Model

Overview	Computational Theory	Statistical Theory	Experiments
•0000000000	O	O	00000000
Background			

Consider a Sparse Linear Model:

$$\mathbf{y} = \mathbf{A}\boldsymbol{\theta}^* + \mathbf{z}, \ \mathbf{y} \in \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{n \times d}$$

 $\|oldsymbol{ heta}^*\|_0 \leq k^* < n \ll d$, z $\sim \mathcal{N}(oldsymbol{0},\sigma^2oldsymbol{\mathsf{I}})$

Consider the nonconvex sparse learning problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \mathcal{F}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{\theta}) \quad \text{subject to } ||\boldsymbol{\theta}||_0 \leq k,$$

 $\mathcal{F}(\boldsymbol{\theta})$: Empirical risk – smooth and nonstrongly convex. Example: $f_i(\boldsymbol{\theta}) = \frac{1}{b} \|\mathbf{y}_i - \mathbf{A}_i \boldsymbol{\theta}\|_2^2$ for Sparse Linear Model

- Non-convex; NP-hard (in the worst case)
- Good empirical performance

• Restricted Strong Convexity: for any $\theta, \theta' \in \mathbb{R}^d$ with $\|\theta - \theta'\|_0 \leq s$,

$$\mathcal{F}(oldsymbol{ heta}) - \mathcal{F}(oldsymbol{ heta}') - \langle
abla \mathcal{F}(oldsymbol{ heta}'), oldsymbol{ heta} - oldsymbol{ heta}'
angle \geq rac{
ho_{oldsymbol{ sigma}}}{2} \|oldsymbol{ heta} - oldsymbol{ heta}' \|_2^2.$$

• Restricted Strong Smoothness: For any $i \in [n]$, and any $\theta, \theta' \in \mathbb{R}^d$ with $\|\theta - \theta'\|_0 \leq s$, $f_i(\theta) - f_i(\theta') - \langle \nabla f_i(\theta'), \theta - \theta' \rangle \leq \frac{\rho_s^+}{2} \|\theta - \theta'\|_2^2$.

Much weaker than Restricted Isometry Property (RIP): $\rho_s^+ < 2$ Hidden structure:

	0	0	00000000
Overview	Computational Theory	Statistical Theory	Experiments

Gradient Hard Thresholding (GHT, Jain et al., (2014)):

$$\boldsymbol{\theta}^{(t+1)} = \mathcal{H}_k\left(\boldsymbol{\theta}^{(t)} - \eta \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})\right),$$

• Computationally expensive – $\mathcal{O}(nd)$ each iteration

Motivation			
Overview	Computational Theory	Statistical Theory	Experiments
00000000000	0	0	

Gradient Hard Thresholding (GHT, Jain et al., (2014)):

$$\boldsymbol{\theta}^{(t+1)} = \mathcal{H}_k\left(\boldsymbol{\theta}^{(t)} - \eta \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})\right),\,$$

Computationally expensive – O(nd) each iteration

Stochastic Gradient Hard Thresholding (SGHT, Nguyen et al., (2014)):

$$\boldsymbol{\theta}^{(t+1)} = \mathcal{H}_k\left(\boldsymbol{\theta}^{(t)} - \eta \nabla f_i(\boldsymbol{\theta}^{(t)})\right),\,$$

● Large variance ⇒ Large statistical error

Motivation			
Overview	Computational Theory	Statistical Theory	Experiments
0000000000	0	O	000000000

Gradient Hard Thresholding (GHT, Jain et al., (2014)):

$$\boldsymbol{\theta}^{(t+1)} = \mathcal{H}_k\left(\boldsymbol{\theta}^{(t)} - \eta \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})\right),\,$$

Computationally expensive – O(nd) each iteration

Stochastic Gradient Hard Thresholding (SGHT, Nguyen et al., (2014)):

$$\boldsymbol{\theta}^{(t+1)} = \mathcal{H}_k\left(\boldsymbol{\theta}^{(t)} - \eta \nabla f_i(\boldsymbol{\theta}^{(t)})\right),$$

● Large variance ⇒ Large statistical error

We propose **Stochastic Variance Reduced Gradient Hard Thresholding** (SVR-GHT):

- Computationally efficient $\mathcal{O}(d)$ each iteration
- Reduced variance ⇒ Small statistical error

Overview	Computational Theory	Statistical Theory	Experiments
0000000000	o	O	000000000
Intuition			

• "Ideal gradient":
$$\nabla f_i(\boldsymbol{\theta}^{(t)}) - \nabla f_i(\boldsymbol{\theta}^*)$$

Overview	Computational Theory	Statistical Theory	Experiments
0000000000	O	O	000000000
Intuition			

- "Ideal gradient": $\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*)$
- Reduce variance: $\mathbb{E} \| \nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) \|_2 \leq \rho_s^+ \| \boldsymbol{\theta}^{(t)} \boldsymbol{\theta}^* \|_2 \downarrow$

Intuition			
Overview	Computational Theory	Statistical Theory	Experiments
0000000000	O	O	000000000

- "Ideal gradient": $\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*)$
- Reduce variance: $\mathbb{E} \| \nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) \|_2 \leq \rho_s^+ \| \boldsymbol{\theta}^{(t)} \boldsymbol{\theta}^* \|_2 \downarrow$
- Unbiased estimator: $\mathbb{E}\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) + \nabla \mathcal{F}(\boldsymbol{\theta}^*) = \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})$

Intuition			
Overview	Computational Theory	Statistical Theory	Experiments
0000000000	O	0	000000000

- "Ideal gradient": $\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*)$
- Reduce variance: $\mathbb{E} \| \nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) \|_2 \le \rho_s^+ \| \boldsymbol{\theta}^{(t)} \boldsymbol{\theta}^* \|_2 \downarrow$
- Unbiased estimator: $\mathbb{E}\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) + \nabla \mathcal{F}(\boldsymbol{\theta}^*) = \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})$
- θ^* is unknown $\Longrightarrow \widetilde{\theta}$: Variance Reduced Stochastic Gradient $\nabla f_{i_t}(\theta^{(t)}) - \nabla f_{i_t}(\widetilde{\theta}) + \nabla \mathcal{F}(\widetilde{\theta})$

Intuition			
Overview	Computational Theory	Statistical Theory	Experiments
0000000000	O	O	000000000

- "Ideal gradient": $\nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*)$
- Reduce variance: $\mathbb{E} \| \nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) \|_2 \le \rho_s^+ \| \boldsymbol{\theta}^{(t)} \boldsymbol{\theta}^* \|_2 \downarrow$
- Unbiased estimator: $\mathbb{E} \nabla f_i(\boldsymbol{\theta}^{(t)}) \nabla f_i(\boldsymbol{\theta}^*) + \nabla \mathcal{F}(\boldsymbol{\theta}^*) = \nabla \mathcal{F}(\boldsymbol{\theta}^{(t)})$
- θ^* is unknown $\Longrightarrow \widetilde{\theta}$: Variance Reduced Stochastic Gradient $\nabla f_{i_t}(\theta^{(t)}) - \nabla f_{i_t}(\widetilde{\theta}) + \nabla \mathcal{F}(\widetilde{\theta})$

For
$$r = 1, 2, ...$$
 (outer loop)
 $\theta^{(0)} = \widetilde{\theta}^{(r-1)}; \ \widetilde{\mathbf{u}} = \nabla \mathcal{F}(\widetilde{\theta}^{(r-1)})$
For $t = 0, 1, ..., m-1$ (inner loop)
Randomly sample i_t from $\{1, ..., n\}$
 $\overline{\theta}^{(t)} = \theta^{(t)} - \eta \cdot \left(\nabla f_{i_t}(\theta^{(t)}) - \nabla f_{i_t}(\widetilde{\theta}^{(r-1)}) + \widetilde{\mathbf{u}}\right)$
 $\theta^{(t+1)} = \mathcal{H}_k(\overline{\theta}^{(t)})$
 $\widetilde{\theta}^{(r)} = \theta^{(m)}$

	- · · ·		00000000
000000000	0	0	00000000
Overview	Computational Theory	Statistical Theory	Experiments

SVR-GHT:

• SVRG: Sufficient contraction, e.g.,

$$\|\overline{\boldsymbol{\theta}}^{(t)} - \boldsymbol{\theta}^*\|_2 \cong 0.8 \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^*\|_2$$

• Hard Thresholding: Slight expansion, e.g.,

$$\|\mathcal{H}_k(\overline{\boldsymbol{ heta}}^{(t)}) - \boldsymbol{ heta}^*\| \cong 1.1 \|\overline{\boldsymbol{ heta}}^{(t)} - \boldsymbol{ heta}^*\|_2$$

• Overall linear rate, e.g., $\|\mathcal{H}_k(\overline{\boldsymbol{\theta}}^{(t)}) - \boldsymbol{\theta}^*\| \cong 0.88 \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^*\|_2$

Why Variance	Reduction		
Overview	Computational Theory	Statistical Theory	Experiments
0000000000	o	o	000000000

SVR-GHT:

• SVRG: Sufficient contraction, e.g.,

$$\|\overline{\boldsymbol{\theta}}^{(t)} - \boldsymbol{\theta}^*\|_2 \cong 0.8 \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^*\|_2$$

• Hard Thresholding: Slight expansion, e.g.,

$$\|\mathcal{H}_k(\overline{oldsymbol{ heta}}^{(t)}) - oldsymbol{ heta}^*\| \cong 1.1 \|\overline{oldsymbol{ heta}}^{(t)} - oldsymbol{ heta}^*\|_2$$

• Overall linear rate, e.g.,
$$\|\mathcal{H}_k(\overline{m{ heta}}^{(t)}) - m{ heta}^*\| \cong 0.88 \|m{ heta}^{(t)} - m{ heta}^*\|_2$$

SGHT:

- Overall linear rate only for well condition problem
- No sufficient contraction otherwise

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	o	O	000000000
Geometric Intu	ition		

Geometric Int	uition		
00000000000	0	0	00000000
Overview	Computational Theory	Statistical Theory	Experiments

Geometric	Intuition		
00000000000	0	0	00000000
Overview	Computational Theory	Statistical Theory	Experiments

Geometric Int	uition		
Overview	Computational Theory	Statistical Theory	Experiments
000000000000	o	0	000000000

Geometric In	tuition		
Overview	Computational Theory	Statistical Theory	Experiments
0000000000000	O	O	000000000

- $\pmb{\theta}^*$: True sparse model parameter. Suppose
 - $\mathcal{F}(\theta)$ satisfies RSC and $\{f_i(\theta)\}_{i=1}^n$ satisfy RSS with $s = 2k + k^*$
 - $\|\boldsymbol{\theta}^*\|_0 \leq k^*$, $k \gtrsim \kappa_s^2 k^*$, $\eta \rho_s^+ \simeq 1$, $m \gtrsim \kappa_s$ and $r \lesssim \log\left(rac{\mathcal{F}(\tilde{\boldsymbol{\theta}}^{(0)}) \mathcal{F}(\boldsymbol{\theta}^*)}{\varepsilon \delta}
 ight)$

Then with probability at least $1 - \delta$,

$$\|\widetilde{oldsymbol{ heta}}^{(r)}-oldsymbol{ heta}^*\|_2\leq \sqrt{rac{2arepsilon}{
ho_{\overline{s}}}}+g_2(oldsymbol{ heta}^*),$$

 $g_2(oldsymbol{ heta}^*) = \mathcal{O}\left(\sqrt{s} \|
abla \mathcal{F}(oldsymbol{ heta}^*) \|_\infty\right)$: the statistical error.

- $\pmb{\theta}^*$: True sparse model parameter. Suppose
 - $\mathcal{F}(\theta)$ satisfies RSC and $\{f_i(\theta)\}_{i=1}^n$ satisfy RSS with $s = 2k + k^*$

•
$$\| \boldsymbol{\theta}^* \|_0 \leq k^*$$
, $k \gtrsim \kappa_s^2 k^*$, $\eta \rho_s^+ \simeq 1$, $m \gtrsim \kappa_s$ and $r \lesssim \log \left(\frac{\mathcal{F}(\boldsymbol{\tilde{\theta}}^{(0)}) - \mathcal{F}(\boldsymbol{\theta}^*)}{\varepsilon \delta} \right)$

Then with probability at least $1 - \delta$,

$$\|\widetilde{oldsymbol{ heta}}^{(r)}-oldsymbol{ heta}^*\|_2\leq \sqrt{rac{2arepsilon}{
ho_{\overline{s}}}}+g_2(oldsymbol{ heta}^*),$$

 $g_2(oldsymbol{ heta}^*) = \mathcal{O}\left(\sqrt{s} \|
abla \mathcal{F}(oldsymbol{ heta}^*) \|_\infty
ight)$: the statistical error.

Linear Convergence to θ^* within optimal statistical error.

- $\pmb{\theta}^*$: True sparse model parameter. Suppose
 - $\mathcal{F}(\theta)$ satisfies RSC and $\{f_i(\theta)\}_{i=1}^n$ satisfy RSS with $s = 2k + k^*$

•
$$\| \boldsymbol{\theta}^* \|_0 \leq k^*$$
, $k \gtrsim \kappa_s^2 k^*$, $\eta \rho_s^+ \simeq 1$, $m \gtrsim \kappa_s$ and $r \lesssim \log \left(\frac{\mathcal{F}(\boldsymbol{\tilde{\theta}}^{(0)}) - \mathcal{F}(\boldsymbol{\theta}^*)}{\varepsilon \delta} \right)$

Then with probability at least $1 - \delta$,

$$\|\widetilde{oldsymbol{ heta}}^{(r)}-oldsymbol{ heta}^*\|_2\leq \sqrt{rac{2arepsilon}{
ho_{\overline{s}}}}+g_2(oldsymbol{ heta}^*),$$

 $g_2(oldsymbol{ heta}^*) = \mathcal{O}\left(\sqrt{s} \|
abla \mathcal{F}(oldsymbol{ heta}^*) \|_\infty\right)$: the statistical error.

Linear Convergence to θ^* within optimal statistical error.

Extensions: SAGA-GHT, Asynchronous SVR-GHT

(I) Sparse Linear Regression:

•
$$\mathbf{y} = \mathbf{A} \boldsymbol{\theta}^* + \mathbf{z}$$
, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, $\|\boldsymbol{\theta}^*\|_0 \leq k^*$

$$\|\tilde{\boldsymbol{\theta}}^{(r)} - \boldsymbol{\theta}^*\|_2 = \mathcal{O}_p\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$$

(I) Sparse Linear Regression:

•
$$\mathbf{y} = \mathbf{A} \boldsymbol{\theta}^* + \mathbf{z}, \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \ \|\boldsymbol{\theta}^*\|_0 \leq k^*$$

$$\|\tilde{\boldsymbol{\theta}}^{(r)} - \boldsymbol{\theta}^*\|_2 = \mathcal{O}_p\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$$

(II) Generalized Linear Models:

•
$$\mathbb{P}(y_i|\mathbf{A}_{i*}, \boldsymbol{\theta}^*, \sigma) \propto \exp\{y_i\mathbf{A}_{i*}\boldsymbol{\theta}^* - h(\mathbf{A}_{i*}\boldsymbol{\theta}^*)\}, \|\boldsymbol{\theta}^*\|_0 \leq k^*$$

$$\|\tilde{\boldsymbol{\theta}}^{(r)} - \boldsymbol{\theta}^*\|_2 = \mathcal{O}_p\left(\sqrt{\frac{k^*\log d}{nb}}\right)$$

(I) Sparse Linear Regression:

•
$$\mathbf{y} = \mathbf{A} \boldsymbol{\theta}^* + \mathbf{z}$$
, $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, $\|\boldsymbol{\theta}^*\|_0 \leq k^*$

$$\|\tilde{\boldsymbol{\theta}}^{(r)} - \boldsymbol{\theta}^*\|_2 = \mathcal{O}_p\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$$

(II) Generalized Linear Models:

•
$$\mathbb{P}(y_i|\mathbf{A}_{i*}, \boldsymbol{\theta}^*, \sigma) \propto \exp\{y_i\mathbf{A}_{i*}\boldsymbol{\theta}^* - h(\mathbf{A}_{i*}\boldsymbol{\theta}^*)\}, \|\boldsymbol{\theta}^*\|_0 \leq k^*$$

 $\|\tilde{\boldsymbol{\theta}}^{(r)} - \boldsymbol{\theta}^*\|_2 = \mathcal{O}_p\left(\sqrt{\frac{k^*\log d}{nb}}\right)$

(III) Low-rank Matrix Regression;

•
$$\mathbf{y} = \mathcal{A}(\mathbf{\Theta}^*) + \mathbf{z}, \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \ \mathbf{\Theta}^* \in \mathbb{R}^{d \times p}, \ \mathrm{rank}(\mathbf{\Theta}^*) \leq k^*$$

$$\|\tilde{\boldsymbol{\Theta}}^{(r)} - \boldsymbol{\Theta}^*\|_{\mathrm{F}} = \mathcal{O}_p\left(\sigma\sqrt{\frac{k^*(d+p)}{nb}}\right)$$

Sparse linear model:

- Methods: GHT, SGHT, SVR-GHT
- Settings: $k^* = 3$, k = 500, nb = 10000, d = 25000
- Horizontal-axis: # passes of data

• Vertical-axis:
$$\frac{\mathcal{F}(\widetilde{\theta}^{(r)})}{\mathcal{F}(\mathbf{0})}$$

Sparse linear model:

- Methods: GHT, SGHT, SVR-GHT
- Settings: $k^* = 3$, k = 500, nb = 10000, d = 25000
- Low/High correlation; Small/Large mini-batch size b

• Criterion:
$$\|\widetilde{\boldsymbol{\theta}}^{(10^6)} - \boldsymbol{\theta}^*\|_2 / \|\boldsymbol{\theta}^*\|_2$$

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	O	O	00000000
Real Data			

Logistic regression for binary classification:

- RCV1 dataset: d = 29992, nb = 5000 for training / 4625 for testing
- Small/Large mini-batch size b
- Horizontal-axis: # passes of data
- Vertical-axis: Training error

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	O	O	00000000
Real Data			

Logistic regression for binary classification:

- RCV1 dataset: d = 29992, nb = 5000 for training / 4625 for testing
- Small/Large mini-batch size b
- Criterion: Test classification error

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	O	O	000000000
Summary			

- Linear Convergence to θ^* within statistical error
- Optimal statistical rate of convergence

Table 1.	Comparison	of GHT,	SGHT	and SVR-GHT.
----------	------------	---------	------	--------------

Method	GHT	SGHT	SVR-GHT
Assumption on κ_s	κ_s bounded	$\kappa_s \leq rac{4}{3}$	κ_s bounded
Comput. Complx.	$\mathcal{O}\left(n\kappa_{s}\cdot\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right) ight)$	$\mathcal{O}\left([n+\kappa_s]\cdot\log\left(\frac{1}{\epsilon}\right)\right)$
Statistical Err.	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{b}}\right)$	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$

 $\kappa_s = rac{
ho_s^-}{
ho_s^-}$; b: mini-batch size; ϵ : optimization accuracy; $\|m{ heta}^*\|_0 = k^*$

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	o	O	0000000000
Summary			

- Linear Convergence to θ^* within statistical error
- Optimal statistical rate of convergence

Table 1. Comparison of GHT, SGHT and SVR-GHT.

Method	GHT	SGHT	SVR-GHT
Assumption on κ_s	κ_s bounded	$\kappa_s \leq \frac{4}{3}$	κ_s bounded
Comput. Complx.	$\mathcal{O}\left(\mathbf{n\kappa_s} \cdot \log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right) ight)$	$\mathcal{O}\left([\mathbf{n}+\mathbf{\kappa_s}]\cdot\log\left(\frac{1}{\epsilon}\right) ight)$
Statistical Err.	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{b}}\right)$	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$

 $\kappa_s = \frac{\rho_s^+}{\rho_s^-}$; b: mini-batch size; ϵ : optimization accuracy; $\| {m heta}^* \|_0 = k^*$

Overview	Computational Theory	Statistical Theory	Experiments
00000000000	O	O	0000000000
Summary			

- Linear Convergence to θ^* within statistical error
- Optimal statistical rate of convergence

Table 1.	Comparison	of GHT,	SGHT	and SVR-GHT.
----------	------------	---------	------	--------------

Method	GHT	SGHT	SVR-GHT
Assumption on κ_s	κ_{s} bounded	$\kappa_s \leq \frac{4}{3}$	κ_s bounded
Comput. Complx.	$\mathcal{O}\left(n\kappa_{s}\cdot\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\left[n+\kappa_{s}\right]\cdot\log\left(\frac{1}{\epsilon}\right)\right)$
Statistical Err.	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{nb}}\right)$	$\mathcal{O}\left(\sigma\sqrt{\frac{k^*\log d}{\mathbf{b}}}\right)$	$\mathcal{O}\left(\sigma\sqrt{rac{k^*\log d}{nb}} ight)$

 $\kappa_s = rac{
ho_s^+}{
ho_s^-};$ b: mini-batch size; ϵ : optimization accuracy; $\|m{ heta}^*\|_0 = k^*$

Existing nonconvex optimization method (Loh & Wainwright, 2013):

```
\min_{\boldsymbol{\theta}} \ \mathcal{F}(\boldsymbol{\theta}) + \mathcal{P}_{\lambda,\gamma}(\boldsymbol{\theta}) \quad \text{subject to } ||\boldsymbol{\theta}||_1 \leq R,
```

- $\mathcal{P}_{\lambda,\gamma}(\boldsymbol{ heta})$: a nonconvex regularization function, such as MCP, SCAD
- More tuning efforts: $\lambda, \gamma, R \iff \mathsf{SVR}\text{-}\mathsf{GHT}$: k

Overview	Computational Theory	Statistical Theory	Experiments
0000000000	0	0	00000000

Thank you !