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Background and Motivation
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sparsity-enabled inference

Compressed sensing:

arg minx ‖x‖1 s.t. ‖y − Ax‖2 ≤ ε

⇒ infer sparse x from {y ,A} (Candes, Romberg, & Tao; Donoho; many, many others...)

Its Variants: (e.g., matrix completion)

arg minX ‖X‖∗ s.t.
∑

(i,j)∈S |Yi,j − Xi,j |2 ≤ ε

⇒ observe low-rank matrix at subset of loc’s; recover by convex method(s)
(Candes & Recht; Keshavan, Montanari, & Oh; Candes & Plan; Negahban & Wainwright; Koltchinskii, Lounici, &

Tsybakov; many, many others...)
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problem: outliers in “big data” applications

Malicious responses in survey data...

(data from personality-testing.info)

Corrupted genomics experiments...

(image from biomedcentral.com)

Unusual origin-desntination flows...

(Lakhina, Crovella, & Diot 2004;

Mardani, Mateos, & Giannakis 2013)

Salient regions in high-res images...

(Itti, Koch, & Niebur 1998; many others...)

Challenge: Data points are high-dimensional, and numerous
Opportunity: Often we only want to locate data points that are anomalous
Question: Can sparse inference ideas help?

p
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a structural model for outliers

Consider matrices M ∈ Rn1×n2 admitting a decomposition

M = L︸︷︷︸
low rank

+ C︸︷︷︸
column sparse

“Outliers” are vectors w/energy outside of (unknown) common subspace L

(“inlier” vectors) 

(“outlier” vector) 

L



Background Approach Analysis Validation Extensions Summary Extras

a structural model for outliers

A color-coded matrix view:

M = L+C

(Outlier Columns)

Define outlier column support to be set of indices of the outlier columns:

IC := {i ∈ {1, 2, . . . , n2} : ‖PL⊥M:,i‖2 > 0}
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prior work – recovery via convex demixing

Idea: Decompose M as sum of low rank and column-sparse components
(Outlier Pursuit; Xu, Caramanis, & Sanghavi 2012){

L̂, Ĉ
}

= argmin
L,C

‖L‖∗ + λ‖C‖1,2 s.t. M = L + C

Here,

• ‖L‖∗ :=
∑min{n1,n2}

i=1 σi , where {σi} are singular values of L

• ‖C‖1,2 :=
∑n2

i=1 ‖C:,i‖2, where ‖ · ‖2 is Euclidean norm

• λ > 0 is a regularization parameter

(Related work on robust subspace estimation: Lerman, McCoy, Tropp, & Zheng, 2012)
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structural “identifiability” assumptions

Def’n: (Column Incoherence Property)

Matrix L ∈ Rn1×n2 with nL ≤ n2 nonzero columns, rank r , and compact SVD
L = UΣV∗ is said to satisfy the column incoherence property with parameter µL if

max
i
‖V∗ei‖2

2 ≤ µL
r

nL
,

where {ei} are basis vectors of the canonical basis for Rn2 .

(small µL precludes subspaces L defined by single col’s of L; an assumption that guarantees identifiability of {L, C})

Graphically:

L 
Σ	



U 
V* =
. . .(squared) `2 norms

µL =

nL

r
max

i
kV⇤eik22 2

h
1,

nL

r

i
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existing recovery guarantees

Recovery result for Outlier Pursuit: (Xu, Caramanis, & Sanghavi 2012)

Suppose components L and C of M satisfy the structural conditions

• rank(L) = r ,

• L satisfies the column incoherence property with parameter µL, and

• |IC| ≤ const. (n2/rµL) .

For any kub ≥ k, can identify a range of allowable λ = λ(kub) s.t. any solutions {L̂, Ĉ}
of the outlier pursuit procedure satisfy span

(
L̂
)

= L, and Î
Ĉ
, {i : ‖Ĉ:,i‖2 > 0} = IC.

Nice! But, outlier pursuit can be computationally expensive on large-scale data
(req’s iterative computation of SVD’s of n1 × n2 matrices)

What if we seek only outlier locations?
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Adaptive CS for Outlier Localization
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a two-step approach (step 1)

Collect Measurements: Y(1) := ΦMS = Φ(L + C)S where

• Φ ∈ Rm×n1 is a (random) measurement matrix (m < n)

• For γ ∈ (0, 1), S is a column sub matrix of identity with ≈ γn2 columns
(rows sampled iid from a Bernoulli(γ) model)

M = L+C

�M = �L+�C

�MS
Observations
(Step 1)

Outlier Columns

Apply Outlier Pursuit to “pocket-sized” data ΦMS (idea: identify span of ΦL)
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a two-step approach (step 2)

Collect measurements y(2) := φ PL̂⊥
(1)
ΦMAT where

• Φ ∈ Rm×n1 is same (random) measurement matrix as in step 1,

• L̂(1) is the linear subspace spanned by col’s of L̂(1) (learned in step 1)

• PL̂(1)
is orthogonal projector onto L̂(1); PL̂⊥

(1)
, I− PL̂(1)

• φ ∈ R1×m a random vector, A ∈ Rp×n2 a random matrix

�M = �L+�C

M = L+C

Observations (Step 2)

(when “demixing” from step 1 succeeds)P bL?�M

�P bL?�M

�P bL?�MAT

Solve ĉ = argminc ‖c‖1 s.t. y(2) = cAT

(support(ĉ) , {i : ĉi 6= 0}, becomes estimate for outlier locations)
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Performance Analysis
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assumptions

Suppose components L and C of M satisfy the structural conditions

• rank(L) = r ,

• L has nL ≤ n2 nonzero columns,

• L satisfies the column incoherence property with parameter µL, and

• |IC| = k ≤ 1
3

(
1

1+121 rµL

)
n2.

Take φ to have elements drawn iid from any continuous distribution.

Take Φ and A to satisfy the Distributional Johnson-Lindenstrauss (JL) Property:

Def’n: (Distributional Johnson Lindenstrauss (JL) Property)

An m × n matrix B is said to satisfy the distributional JL property if for any fixed
v ∈ Rn and any ε ∈ (0, 1),

Pr
( ∣∣ ‖Bv‖2

2 − ‖v‖2
2

∣∣ ≥ ε‖v‖2
2

)
≤ 2e−mf (ε),

where f (ε) > 0 is a constant depending on ε, specific to the distribution of B.

(e.g., f (ε) = ε2/4− ε3/6 for iid zero-mean N (0, 1/m) ensemble)

Then...
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provable recovery

Theorem: (Xingguo Li & JH 2015, 2016)

Fix any δ ∈ (0, 1/3), and choose

γ ≥ max

{
200 log( 6

δ
)

nL

,
600(1 + 121rµL) log( 6

δ
)

n2

,
10rµL log( 6r

δ
)

nL

}
,

m ≥
5(r + 1) + log(k) + log(2/δ)

f (1/4)
, p ≥

11k + 2k log(n2/k) + log(2/δ)

f (1/4)
.

Take the outlier pursuit reg. parameter λ = 3
7
√

kub
, where kub is any upper bound of k. Then w.p.

≥ 1− 3δ, the support estimate produced by our method is correct, and the total number of observations is no

greater than
(

3
2

)
γmn2 + p.

IEEE Trans. Sig. Proc. 63(7) pp. 1792-1807, April 2015

IEEE Workshop on Stat. Sig. Proc., 2016

Key Point: Localization from as few as O ((r + log k)(µLr log r) + k log(n2/k))︸ ︷︷ ︸
O( (µLr

2+k) · polylog(k,r,n2) ) � n1n2

obs.
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Experimental Results



Background Approach Analysis Validation Extensions Summary Extras

phase transitions – synthetic (Gaussian) data

Outlier recovery phase transitions (white regions ↔ successful recovery).
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Top → bottom: increasing # rows in Φ (recover w/increasing rank r of L)
Left → right: increasing # cols in AT (recover increasing # k of outliers)
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comparisons w/existing subsampling methods

Compare with entry-wise subsampled variant of outlier pursuit
(Chen, Xu, Caramanis, & Sanghavi “Robust matrix completion with corrupted columns,” ICML, 2011)

Subsampled OP
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Take-away: Accurate outlier localization in a wider range of (r , k) w/ours,
but (to be fair!) we are using a “more favorable” sampling model
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an application in computer vision

Given an image F ∈ Rt1×t2 ,

• Decompose into
n2 non-overlapping
p1 × p2-pixel patches

• Vectorize patches into
n1×1 column vectors,
where n1 = p1p2

• Assemble column vectors into
a matrix M ∈ Rn1×n2

(overall, n1n2 = t1t2)

“GBVS” = Graph-based visual saliency

[Harel et al. 2007]

“RMC” = Subsampled OP [Chen et al. 2011]

“ACOS” = Adapt. Compr. Outlier Sensing (ours)

Images from the Microsoft Research Salient Object Database
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an application in computer vision

Timing Comparison:

mean (st. dev.) in seconds; averaged over 1000 images from Microsoft Research Salient Object Database
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Extensions
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finding “group-structured” features

Recall the second step of our two-step approach...

Observations:

�M = �L+�C

M = L+C

Observations (Step 2)

(when “demixing” from step 1 succeeds)P bL?�M

�P bL?�M

�P bL?�MAT

Inference: ĉ = argminc∈Rn2 ‖c‖1 s.t. y(2) = cAT

⇒ Can instead seek “structured sparse” outliers, e.g.,

ĉ = argmin
c∈Rn2

∑
j∈J

‖cj‖2 s.t. y(2) = cAT

(j ∈ J indexes groups partitioning {1, . . . , n2}, cj is corresp. subvector of c)
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improved recovery results

Assume nonzero columns occur in groups of size B = n2/J.

Under same structural assumptions, can locate outliers from as few as

mtot = O
(

(r + log k)(µLr log r) + k +
k
√
B

log

(
n2 − k

B

))
measurements. [Li & Haupt, GlobalSIP 2015 (Best Student Paper Award)]

(a) (b) (c) (d) (e)
Detection results with the grouping effect. (a) original images; (b) ground truth; detection result (c) w/o grouping

(B = 1) and with grouping effects: (d) B = 2 and (e) B = 3. Sampling rate: 2.5% (γ = 0.2, m = 0.1n1 and p =

0.5n2).
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locating salient features in “filtered” images...

Each step of our two-step process obtains linear measurements of the image pixels.

⇒ Can incorporate any linear “preprocessing” (e.g., filtering) into the overall
measurement model; seek salient features of filtered image [Li & Haupt, GlobalSIP 2015].

Examples:

(a) (b) (c) (d) (e) (f) (g) (h)

Gray scale saliency map estimation. (a) original images; (b) ground truth; (c)-(e) RGB planes individually; filtered

intensity images with (f) Laplacian of Gaussian filter, (g) Horizontal Edge filter and (h) Vertical Edge filter. Sampling

rate: 4.5% (γ = 0.2, m = 0.2n1, p = 0.5n2, n1 = 100 and n2 = 1200).

(Shown: magnitudes of recovered c vector elements, reshaped into images.)
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Summary
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summary

Key Insight:

• Interpret outlier localization as generalized sparse “support recovery”

• Extend adaptive & compressive sensing ideas to outlier identification!

Main Results:

• For low-rank-plus-outlier matrix model, accurate outlier localization from
O
(

(µLr
2 + k) · polylog(k, r , n2)

)
obs. (fewer when exploiting group structure!)

• Can find outliers using (storing/processing) much smaller data “footprint”!

• Reminiscent of “standard” CS, with add’l O(r2polylog(k, r , n2)) term;
→ interpretation: sampling overhead to pay for not knowing “background”

Extensions to noisy & missing data settings & dictionary based outlier detection

Thanks for your attention!



Background Approach Analysis Validation Extensions Summary Extras

Extra Slides
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a “simplified” method

Collect Measurements: Y = ΦM (w/Φ m × n, random as above)

For column subsampling matrix S as above, let Y(1) = YS and solve

{L̂(1), Ĉ(1)} = argmin
L,C

‖L‖∗ + λ‖C‖1,2 s.t. Y(1) = L + C

Let L̂(1) be span of L̂(1), and form ĉ with ĉi = 1{‖PL̂⊥
(1)

Y:,i‖2 6=0} for i = 1, . . . , n2

Subsamp. OP
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Comparison between Subsampled OP and our “simplified” method for outlier
recovery phase transitions plots (white regions ↔ successful recovery).
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noise/modeling error

Noisy observations:

M = L + C + N,

where N has i.i.d. N (0, σ2) entries.
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phase transitions: noisy case, our method
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Outlier recovery phase transitions plots for our method with noise (white regions
↔ successful recovery).
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phase transitions: noisy case, our simplified method
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Outlier recovery phase transitions plots for our simplified method with noise
(white regions ↔ successful recovery).
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missing data

Given a subset Ω ⊆ {1, . . . , n1} × {1, . . . , n2}, the available data is modeled as

PΩ(M) = PΩ(L) + PΩ(C),

where PΩ(·) masks its argument at locations not in Ω.

Modifications to our (simplified) method

• Choose Φ to be a row subsampling matrix and observe Y = ΦPΩ(M)

• Note subsampling operations “commute”: ΦPΩ(M) = PΩΦ
(ΦM),

• Step 1: let Y(1) = YS and solve

{L̂(1), Ĉ(1)} = argminL,C ‖L‖∗ + λ‖C‖1,2 s.t. Y(1) = PΩΦ
(L + C)

to learn subspace spanned by ΦL

• Step 2: for each column Y:,j

• let Ij be set of observed loc’s

• find subspace spanned by col’s of row-sampled (L̂(1))Ij ,:
• project Y:,j onto the orth. complement of that subspace

• compute norm of resulting “residual” vector (nonzero ↔ outlier column)



Background Approach Analysis Validation Extensions Summary Extras

missing data

Given a subset Ω ⊆ {1, . . . , n1} × {1, . . . , n2}, the available data is modeled as

PΩ(M) = PΩ(L) + PΩ(C),

where PΩ(·) masks its argument at locations not in Ω.

Modifications to our (simplified) method

• Choose Φ to be a row subsampling matrix and observe Y = ΦPΩ(M)

• Note subsampling operations “commute”: ΦPΩ(M) = PΩΦ
(ΦM),

• Step 1: let Y(1) = YS and solve
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phase transitions
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Outlier recovery phase transitions plots for models with missing data (white
regions ↔ successful recovery).
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