Locating Outliers in Large Matrices with Adaptive Compressive Sampling

Xingguo Li
Department of Electrical and Computer Engineering
University of Minnesota

Xerox Research Centre Europe
June 30, 2016

Background and Motivation

sparsity-enabled inference

Compressed sensing:
$\underset{y}{t} \frac{\text { meren }}{A}(+\underset{w}{+}$

$$
\arg \min _{x}\|x\|_{1} \text { s.t. }\|y-A x\|_{2} \leq \epsilon
$$

\Rightarrow infer sparse x from $\{y, A\}$ (Candes, Romberg, \& Tao; Donoho; many, many others...)

sparsity-enabled inference

Compressed sensing:

$$
\arg \min _{x}\|x\|_{1} \text { s.t. }\|y-A x\|_{2} \leq \epsilon
$$

\Rightarrow infer sparse x from $\{y, A\}$ (Candes, Romberg, \& Tao; Donoho; many, many others...)

Its Variants: (e.g., matrix completion)

$$
\arg \min _{X}\|X\|_{*} \text { s.t. } \quad \sum_{(i, j) \in \mathcal{S}}\left|Y_{i, j}-X_{i, j}\right|^{2} \leq \epsilon
$$

\Rightarrow observe low-rank matrix at subset of loc's; recover by convex method(s) (Candes \& Recht; Keshavan, Montanari, \& Oh; Candes \& Plan; Negahban \& Wainwright; Koltchinskii, Lounici, \& Tsybakov; many, many others...)

problem: outliers in "big data" applications

Malicious responses in survey data...

(data from personality-testing.info)

problem: outliers in "big data" applications

Malicious responses in survey data...

(data from personality-testing.info)

Corrupted genomics experiments...

(image from biomedcentral.com)

problem: outliers in "big data" applications

Malicious responses in survey data...

(data from personality-testing.info)

Corrupted genomics experiments...

(image from biomedcentral.com)

Unusual origin-desntination flows...

(Lakhina, Crovella, \& Diot 2004;
Mardani, Mateos, \& Giannakis 2013)

problem: outliers in "big data" applications

Malicious responses in survey data...

(data from personality-testing.info)

Unusual origin-desntination flows...

(Lakhina, Crovella, \& Diot 2004; Mardani, Mateos, \& Giannakis 2013)

Corrupted genomics experiments...

(image from biomedcentral.com)

Salient regions in high-res images...

(Itti, Koch, \& Niebur 1998; many others...)

Challenge: Data points are high-dimensional, and numerous Opportunity: Often we only want to locate data points that are anomalous Question: Can sparse inference ideas help?

a structural model for outliers

Consider matrices $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}$ admitting a decomposition

$$
\mathbf{M}=\underbrace{\mathbf{L}}_{\text {low rank }}+\underbrace{\mathbf{C}}_{\text {column sparse }}
$$

"Outliers" are vectors w/energy outside of (unknown) common subspace \mathcal{L}

a structural model for outliers

A color-coded matrix view:

Define outlier column support to be set of indices of the outlier columns:

$$
\mathcal{I}_{\mathbf{C}}:=\left\{i \in\left\{1,2, \ldots, n_{2}\right\} \quad:\left\|\mathbf{P}_{\mathcal{L}^{\perp}} \mathbf{M}_{:, i}\right\|_{2}>0\right\}
$$

prior work - recovery via convex demixing

Idea: Decompose \mathbf{M} as sum of low rank and column-sparse components (Outlier Pursuit; Xu, Caramanis, \& Sanghavi 2012)

$$
\{\widehat{\mathbf{L}}, \widehat{\mathbf{C}}\}=\underset{\boldsymbol{L}, \boldsymbol{C}}{\operatorname{argmin}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{C}\|_{1,2} \text { s.t. } \mathbf{M}=\boldsymbol{L}+\boldsymbol{C}
$$

Here,

- $\|\mathbf{L}\|_{*}:=\sum_{i=1}^{\min \left\{n_{1}, n_{2}\right\}} \sigma_{i}$, where $\left\{\sigma_{i}\right\}$ are singular values of \mathbf{L}
- $\|\mathbf{C}\|_{1,2}:=\sum_{i=1}^{n_{2}}\left\|\mathbf{C}_{:, i}\right\|_{2}$, where $\|\cdot\|_{2}$ is Euclidean norm
- $\lambda>0$ is a regularization parameter
(Related work on robust subspace estimation: Lerman, McCoy, Tropp, \& Zheng, 2012)

structural "identifiability" assumptions

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_{1} \times n_{2}}$ with $n_{\mathbf{L}} \leq n_{2}$ nonzero columns, rank r, and compact SVD $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}$ is said to satisfy the column incoherence property with parameter $\mu_{\mathbf{L}}$ if

$$
\max _{i}\left\|\mathbf{V}^{*} \mathbf{e}_{i}\right\|_{2}^{2} \leq \mu_{\mathbf{L}} \frac{r}{n_{\mathbf{L}}}
$$

where $\left\{\mathbf{e}_{i}\right\}$ are basis vectors of the canonical basis for $\mathbb{R}^{n_{2}}$.
(small $\mu_{\mathbf{L}}$ precludes subspaces \mathcal{L} defined by single col's of \mathbf{L}; an assumption that guarantees identifiability of $\{\mathbf{L}, \mathbf{C}\}$)

structural "identifiability" assumptions

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_{1} \times n_{2}}$ with $n_{\mathbf{L}} \leq n_{2}$ nonzero columns, rank r, and compact SVD $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}$ is said to satisfy the column incoherence property with parameter $\mu_{\mathbf{L}}$ if

$$
\max _{i}\left\|\mathbf{V}^{*} \mathbf{e}_{i}\right\|_{2}^{2} \leq \mu_{\mathbf{L}} \frac{r}{n_{\mathbf{L}}}
$$

where $\left\{\mathbf{e}_{i}\right\}$ are basis vectors of the canonical basis for $\mathbb{R}^{n_{2}}$.
(small $\mu_{\mathbf{L}}$ precludes subspaces \mathcal{L} defined by single col's of \mathbf{L}; an assumption that guarantees identifiability of $\{\mathbf{L}, \mathbf{C}\}$)

Graphically:

existing recovery guarantees

Recovery result for Outlier Pursuit: (Xu, Caramanis, \& Sanghavi 2012)
Suppose components \mathbf{L} and \mathbf{C} of \mathbf{M} satisfy the structural conditions

- $\operatorname{rank}(\mathbf{L})=r$,
- L satisfies the column incoherence property with parameter $\mu_{\mathbf{L}}$, and
- $\left|\mathcal{I}_{\mathbf{C}}\right| \leq$ const. $\left(n_{2} / r \mu_{\mathbf{L}}\right)$.

For any $k_{\mathrm{ub}} \geq k$, can identify a range of allowable $\lambda=\lambda\left(k_{\mathrm{ub}}\right)$ s.t. any solutions $\{\widehat{\mathbf{L}}, \widehat{\mathbf{C}}\}$ of the outlier pursuit procedure satisfy $\operatorname{span}(\widehat{\mathbf{L}})=\mathcal{L}$, and $\widehat{\mathcal{I}}_{\widehat{\mathbf{C}}} \triangleq\left\{i:\left\|\widehat{\mathbf{C}}_{:, i}\right\|_{2}>0\right\}=\mathcal{I}_{\mathbf{C}}$.

Nice! But, outlier pursuit can be computationally expensive on large-scale data (req's iterative computation of SVD's of $n_{1} \times n_{2}$ matrices)

What if we seek only outlier locations?

Adaptive CS for Outlier Localization

a two-step approach (step 1)

Collect Measurements: $\mathbf{Y}_{(1)}:=\mathbf{\Phi} \mathbf{M S}=\boldsymbol{\Phi}(\mathbf{L}+\mathbf{C}) \mathbf{S}$ where

- $\Phi \in \mathbb{R}^{m \times n_{1}}$ is a (random) measurement matrix $(m<n)$
- For $\gamma \in(0,1), \mathbf{S}$ is a column sub matrix of identity with $\approx \gamma n_{2}$ columns (rows sampled iid from a Bernoulli(γ) model)

Apply Outlier Pursuit to "pocket-sized" data $\mathbf{\Phi M S}$ (idea: identify span of $\boldsymbol{\Phi L}$)

a two-step approach (step 2)

Collect measurements $\mathbf{y}_{(2)}:=\phi \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \boldsymbol{\Phi} \mathbf{M A}^{T}$ where

- $\Phi \in \mathbb{R}^{m \times n_{1}}$ is same (random) measurement matrix as in step 1 ,
- $\widehat{\mathcal{L}}_{(1)}$ is the linear subspace spanned by col's of $\widehat{\mathbf{L}}_{(1)}$ (learned in step 1)
- $\mathbf{P}_{\widehat{\mathcal{L}}_{(1)}}$ is orthogonal projector onto $\widehat{\mathcal{L}}_{(1)} ; \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \triangleq \mathbf{I}-\mathbf{P}_{\widehat{\mathcal{L}}_{(1)}}$
- $\phi \in \mathbb{R}^{1 \times m}$ a random vector, $\mathbf{A} \in \mathbb{R}^{p \times n_{2}}$ a random matrix

$\mathbf{M}=\mathbf{L}+\mathbf{C}$

$\boldsymbol{\Phi} \mathbf{M}=\boldsymbol{\Phi} \mathbf{L}+\boldsymbol{\Phi} \mathbf{C}$

Solve $\widehat{\mathbf{c}}=\operatorname{argmin}_{\mathbf{c}} \quad\|\mathbf{c}\|_{1}$ s.t. $\mathbf{y}_{(2)}=\mathbf{c A}^{T}$ (support $(\widehat{\mathbf{c}}) \triangleq\left\{i: \widehat{\mathrm{c}}_{i} \neq 0\right\}$, becomes estimate for outlier locations)

Performance Analysis

assumptions

Suppose components \mathbf{L} and \mathbf{C} of \mathbf{M} satisfy the structural conditions

- $\operatorname{rank}(\mathbf{L})=r$,
- L has $n_{\mathrm{L}} \leq n_{2}$ nonzero columns,
- L satisfies the column incoherence property with parameter $\mu_{\mathbf{L}}$, and
- $\left|\mathcal{I}_{\mathbf{C}}\right|=k \leq \frac{1}{3}\left(\frac{1}{1+121 r \mu_{\mathbf{L}}}\right) n_{2}$.

assumptions

Suppose components \mathbf{L} and \mathbf{C} of \mathbf{M} satisfy the structural conditions

- $\operatorname{rank}(\mathbf{L})=r$,
- L has $n_{\mathrm{L}} \leq n_{2}$ nonzero columns,
- L satisfies the column incoherence property with parameter $\mu_{\mathbf{L}}$, and
- $\left|\mathcal{I}_{\mathbf{C}}\right|=k \leq \frac{1}{3}\left(\frac{1}{1+121 r \mu_{\mathbf{L}}}\right) n_{2}$.

Take ϕ to have elements drawn iid from any continuous distribution.

assumptions

Suppose components \mathbf{L} and \mathbf{C} of \mathbf{M} satisfy the structural conditions

- $\operatorname{rank}(\mathbf{L})=r$,
- \mathbf{L} has $n_{\mathbf{L}} \leq n_{2}$ nonzero columns,
- L satisfies the column incoherence property with parameter $\mu_{\mathbf{L}}$, and
- $\left|\mathcal{I}_{\mathbf{C}}\right|=k \leq \frac{1}{3}\left(\frac{1}{1+121 r \mu_{\mathbf{L}}}\right) n_{2}$.

Take ϕ to have elements drawn iid from any continuous distribution.
Take $\boldsymbol{\Phi}$ and \boldsymbol{A} to satisfy the Distributional Johnson-Lindenstrauss (JL) Property: Def'n: (Distributional Johnson Lindenstrauss (JL) Property)
An $m \times n$ matrix B is said to satisfy the distributional $J L$ property if for any fixed $\mathbf{v} \in \mathbb{R}^{n}$ and any $\epsilon \in(0,1)$,

$$
\operatorname{Pr}\left(\left|\|\mathbf{B} \mathbf{v}\|_{2}^{2}-\|\mathbf{v}\|_{2}^{2}\right| \geq \epsilon\|\mathbf{v}\|_{2}^{2}\right) \leq 2 e^{-m f(\epsilon)}
$$

where $f(\epsilon)>0$ is a constant depending on ϵ, specific to the distribution of \boldsymbol{B}.

$$
\text { (e.g., } f(\epsilon)=\epsilon^{2} / 4-\epsilon^{3} / 6 \text { for iid zero-mean } \mathcal{N}(0,1 / m) \text { ensemble) }
$$

Then...

provable recovery

Theorem: (Xingguo Li \& JH 2015, 2016)
Fix any $\delta \in(0,1 / 3)$, and choose

$$
\begin{gathered}
\gamma \geq \max \left\{\frac{200 \log \left(\frac{6}{\delta}\right)}{n_{\mathbf{L}}}, \frac{600\left(1+121 r \mu_{\mathbf{L}}\right) \log \left(\frac{6}{\delta}\right)}{n_{2}}, \frac{10 r \mu_{\mathbf{L}} \log \left(\frac{6 r}{\delta}\right)}{n_{\mathbf{L}}}\right\}, \\
m \geq \frac{5(r+1)+\log (k)+\log (2 / \delta)}{f(1 / 4)}, \quad p \geq \frac{11 k+2 k \log \left(n_{2} / k\right)+\log (2 / \delta)}{f(1 / 4)}
\end{gathered}
$$

Take the outlier pursuit reg. parameter $\lambda=\frac{3}{7 \sqrt{k_{\mathrm{ub}}}}$, where k_{ub} is any upper bound of k. Then w.p. $\geq 1-3 \delta$, the support estimate produced by our method is correct, and the total number of observations is no greater than $\left(\frac{3}{2}\right) \gamma m n_{2}+p$.

Key Point: Localization from as few as $\mathcal{O}\left((r+\log k)\left(\mu_{\mathrm{L}} r \log r\right)+k \log \left(n_{2} / k\right)\right)$ obs.

$$
\mathcal{O}\left(\left(\mu_{\mathbf{L}} r^{2}+k\right) \cdot \operatorname{poly} \log \left(k, r, n_{2}\right)\right) \ll n_{1} n_{2}
$$

Experimental Results

phase transitions - synthetic (Gaussian) data

Outlier recovery phase transitions (white regions \leftrightarrow successful recovery).

2.1\%

2.3\%

$m=0.3 n_{1}$

$$
p=0.1 n_{2}
$$

$$
p=0.2 n_{2}
$$

$m=0.2 n_{1}$

$$
p=0.3 n_{2}
$$

Top \rightarrow bottom: increasing \# rows in $\boldsymbol{\Phi}$ (recover w/increasing rank r of \mathcal{L}) Left \rightarrow right: increasing \# cols in \boldsymbol{A}^{T} (recover increasing \# k of outliers)

comparisons w/existing subsampling methods

Compare with entry-wise subsampled variant of outlier pursuit
(Chen, Xu, Caramanis, \& Sanghavi "Robust matrix completion with corrupted columns," ICML, 2011)

Subsampled OP

Ours

Take-away: Accurate outlier localization in a wider range of $(r, k) w / o u r s$, but (to be fair!) we are using a "more favorable" sampling model

an application in computer vision

Given an image $\mathbf{F} \in \mathbb{R}^{t_{1} \times t_{2}}$,

- Decompose into n_{2} non-overlapping $p_{1} \times p_{2}$-pixel patches
- Vectorize patches into $n_{1} \times 1$ column vectors, where $n_{1}=p_{1} p_{2}$
- Assemble column vectors into a matrix $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}$ (overall, $n_{1} n_{2}=t_{1} t_{2}$)
"GBVS" $=$ Graph-based visual saliency
[Harel et al. 2007]
"RMC" = Subsampled OP [Chen et al. 2011]
"ACOS" = Adapt. Compr. Outlier Sensing (ours)

Images from the Microsoft Research Salient Object Database

an application in computer vision

Timing Comparison:

Method	GBVS	OP	RMC	RMC	ACOS	ACOS	ACOS
Sampling	100%	100%	20%	5%	4.5%	2.5%	1.5%
Step 1	0.9926	2.9441	2.6324	2.7254	0.0533	0.0214	0.0105
	(0.2742)	(0.3854)	(0.3237)	(0.3660)	(0.0118)	(0.0056)	(0.0025)
Step 2	-	-	-	-	0.2010	0.2014	0.2065
	-	-	-	-	(0.0674)	(0.0692)	(0.0689)

mean (st. dev.) in seconds; averaged over 1000 images from Microsoft Research Salient Object Database

Extensions

finding "group-structured" features

Recall the second step of our two-step approach...
Observations:

Inference: $\widehat{\mathbf{c}}=\operatorname{argmin}_{\mathbf{c} \in \mathbb{R}^{n_{2}}} \quad\|\mathbf{c}\|_{1}$ s.t. $\mathbf{y}_{(2)}=\mathbf{c} \mathbf{A}^{T}$

finding "group-structured" features

Recall the second step of our two-step approach...
Observations:

Inference: $\widehat{\mathbf{c}}=\operatorname{argmin}_{\mathbf{c} \in \mathbb{R}^{n_{2}}} \quad\|\mathbf{c}\|_{1}$ s.t. $\mathbf{y}_{(2)}=\mathbf{c} \mathbf{A}^{T}$
\Rightarrow Can instead seek "structured sparse" outliers, e.g.,

$$
\widehat{\mathbf{c}}=\underset{\mathbf{c} \in \mathbb{R}^{n_{2}}}{\operatorname{argmin}} \sum_{j \in J}\left\|\mathbf{c}_{j}\right\|_{2} \quad \text { s.t. } \mathbf{y}_{(2)}=\mathbf{c A}^{T}
$$

($j \in J$ indexes groups partitioning $\left\{1, \ldots, n_{2}\right\}, \mathbf{c}_{j}$ is corresp. subvector of \mathbf{c})

improved recovery results

Assume nonzero columns occur in groups of size $B=n_{2} / J$.
Under same structural assumptions, can locate outliers from as few as

$$
m_{\mathrm{tot}}=\mathcal{O}\left((r+\log k)\left(\mu_{\mathbf{L}} r \log r\right)+k+\frac{k}{\sqrt{B}} \log \left(\frac{n_{2}-k}{B}\right)\right)
$$

measurements. [Li \& Haupt, GlobaISIP 2015 (Best Student Paper Award)]

improved recovery results

Assume nonzero columns occur in groups of size $B=n_{2} / J$.
Under same structural assumptions, can locate outliers from as few as

$$
m_{\mathrm{tot}}=\mathcal{O}\left((r+\log k)\left(\mu_{\mathbf{L}} r \log r\right)+k+\frac{k}{\sqrt{B}} \log \left(\frac{n_{2}-k}{B}\right)\right)
$$

measurements. [Li \& Haupt, GlobalSIP 2015 (Best Student Paper Award)]

Detection results with the grouping effect. (a) original images; (b) ground truth; detection result (c) w/o grouping ($B=1$) and with grouping effects: (d) $B=2$ and (e) $B=3$. Sampling rate: $2.5 \%\left(\gamma=0.2, m=0.1 n_{1}\right.$ and $p=$ $0.5 n_{2}$).

locating salient features in "filtered" images...

Each step of our two-step process obtains linear measurements of the image pixels.
\Rightarrow Can incorporate any linear "preprocessing" (e.g., filtering) into the overall measurement model; seek salient features of filtered image [Li \& Haupt, GlobalSIP 2015].

locating salient features in "filtered" images...

Each step of our two-step process obtains linear measurements of the image pixels.
\Rightarrow Can incorporate any linear "preprocessing" (e.g., filtering) into the overall measurement model; seek salient features of filtered image [Li \& Haupt, GlobalSIP 2015].

Examples:

Gray scale saliency map estimation. (a) original images; (b) ground truth; (c)-(e) RGB planes individually; filtered intensity images with (f) Laplacian of Gaussian filter, (g) Horizontal Edge filter and (h) Vertical Edge filter. Sampling rate: $4.5 \%\left(\gamma=0.2, m=0.2 n_{1}, p=0.5 n_{2}, n_{1}=100\right.$ and $\left.n_{2}=1200\right)$.

Summary

summary

Key Insight:

- Interpret outlier localization as generalized sparse "support recovery"
- Extend adaptive \& compressive sensing ideas to outlier identification!

Main Results:

- For low-rank-plus-outlier matrix model, accurate outlier localization from $\mathcal{O}\left(\left(\mu_{\mathbf{L}} r^{2}+k\right) \cdot \operatorname{polylog}\left(k, r, n_{2}\right)\right)$ obs. (fewer when exploiting group structure!)
- Can find outliers using (storing/processing) much smaller data "footprint"!
- Reminiscent of "standard" CS, with add'I $\mathcal{O}\left(r^{2} \operatorname{polylog}\left(k, r, n_{2}\right)\right)$ term; \rightarrow interpretation: sampling overhead to pay for not knowing "background"

Extensions to noisy \& missing data settings \& dictionary based outlier detection

> Thanks for your attention!

Extra Slides

a "simplified" method

Collect Measurements: $\mathbf{Y}=\boldsymbol{\Phi} \mathbf{M}(\mathbf{w} / \boldsymbol{\Phi} m \times n$, random as above)
For column subsampling matrix \mathbf{S} as above, let $\mathbf{Y}_{(1)}=\mathbf{Y S}$ and solve

$$
\left\{\widehat{\mathbf{L}}_{(1)}, \widehat{\mathbf{C}}_{(1)}\right\}=\underset{\boldsymbol{L}, \boldsymbol{C}}{\operatorname{argmin}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{C}\|_{1,2} \quad \text { s.t. } \quad \mathbf{Y}_{(1)}=\boldsymbol{L}+\boldsymbol{C}
$$

Let $\widehat{\mathcal{L}}_{(1)}$ be span of $\widehat{\mathbf{L}}_{(1)}$, and form $\widehat{\mathbf{c}}$ with $\widehat{c}_{i}=\mathbf{1}_{\left\{\| \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \mathbf{Y}_{\left(, i \|_{2} \neq 0\right\}}\right.}$ for $i=1, \ldots, n_{2}$

a "simplified" method

Collect Measurements: $\mathbf{Y}=\boldsymbol{\Phi} \mathbf{M}(\mathbf{w} / \boldsymbol{\Phi} m \times n$, random as above)
For column subsampling matrix \mathbf{S} as above, let $\mathbf{Y}_{(1)}=\mathbf{Y S}$ and solve

$$
\left\{\widehat{\mathbf{L}}_{(1)}, \widehat{\mathbf{C}}_{(1)}\right\}=\underset{\boldsymbol{L}, \boldsymbol{C}}{\operatorname{argmin}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{C}\|_{1,2} \quad \text { s.t. } \quad \mathbf{Y}_{(1)}=\boldsymbol{L}+\boldsymbol{C}
$$

Let $\widehat{\mathcal{L}}_{(1)}$ be span of $\widehat{\mathbf{L}}_{(1)}$, and form $\widehat{\mathbf{c}}$ with $\widehat{c}_{i}=\mathbf{1}_{\left\{\| \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}}\right.} \mathbf{Y}_{\left.:, i \|_{2} \neq 0\right\}}$ for $i=1, \ldots, n_{2}$

Subsamp. OP

Our "simplified"
 20\%

Comparison between Subsampled OP and our "simplified" method for outlier recovery phase transitions plots (white regions \leftrightarrow successful recovery).

noise/modeling error

Noisy observations:

$$
\mathbf{M}=\mathbf{L}+\mathbf{C}+\mathbf{N}
$$

where \mathbf{N} has i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$ entries.

phase transitions: noisy case, our method

$$
\sigma=1 \mathrm{e}-3
$$

4.2\%

Outlier recovery phase transitions plots for our method with noise (white regions \leftrightarrow successful recovery).

phase transitions: noisy case, our simplified method

$$
\sigma=3 \mathrm{e}-2
$$

$\sigma=1 \mathrm{e}-2$

Outlier recovery phase transitions plots for our simplified method with noise (white regions \leftrightarrow successful recovery).

missing data

Given a subset $\Omega \subseteq\left\{1, \ldots, n_{1}\right\} \times\left\{1, \ldots, n_{2}\right\}$, the available data is modeled as

$$
\mathbf{P}_{\Omega}(\mathbf{M})=\mathrm{P}_{\Omega}(\mathrm{L})+\mathbf{P}_{\Omega}(\mathbf{C}),
$$

where $\mathbf{P}_{\boldsymbol{\Omega}}(\cdot)$ masks its argument at locations not in $\boldsymbol{\Omega}$.

missing data

Given a subset $\Omega \subseteq\left\{1, \ldots, n_{1}\right\} \times\left\{1, \ldots, n_{2}\right\}$, the available data is modeled as

$$
\mathrm{P}_{\Omega}(\mathrm{M})=\mathrm{P}_{\Omega}(\mathrm{L})+\mathrm{P}_{\Omega}(\mathrm{C})
$$

where $\mathbf{P}_{\boldsymbol{\Omega}}(\cdot)$ masks its argument at locations not in $\boldsymbol{\Omega}$.

Modifications to our (simplified) method

- Choose $\boldsymbol{\Phi}$ to be a row subsampling matrix and observe $\mathbf{Y}=\boldsymbol{\Phi} \mathbf{P}_{\Omega}(\mathbf{M})$
- Note subsampling operations "commute": $\boldsymbol{\Phi} \mathbf{P}_{\Omega}(\mathbf{M})=\mathbf{P}_{\Omega_{\boldsymbol{\Phi}}}(\boldsymbol{\Phi} \mathbf{M})$,
- Step 1: let $\mathbf{Y}_{(1)}=\mathbf{Y S}$ and solve
$\left\{\widehat{\mathbf{L}}_{(1)}, \widehat{\mathbf{C}}_{(1)}\right\}=\operatorname{argmin}_{\boldsymbol{L}, \boldsymbol{C}}\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{C}\|_{1,2}$ s.t. $\mathbf{Y}_{(1)}=\mathbf{P}_{\boldsymbol{\Omega}_{\boldsymbol{\Phi}}}(\boldsymbol{L}+\boldsymbol{C})$ to learn subspace spanned by $\boldsymbol{\Phi L}$
- Step 2: for each column $\mathbf{Y}_{:, j}$
- let \mathcal{I}_{j} be set of observed loc's
- find subspace spanned by col's of row-sampled $\left(\widehat{\mathbf{L}}_{(1)}\right)_{\mathcal{I}_{j}}$,:
- project $\mathbf{Y}_{:, j}$ onto the orth. complement of that subspace
- compute norm of resulting "residual" vector (nonzero \leftrightarrow outlier column)

phase transitions

$$
p_{\Omega}=0.3
$$

$$
p_{\Omega}=0.5
$$

10%

$$
p_{\Omega}=0.7
$$

$$
m=0.1 n_{1}
$$

$m=0.2 n_{1}$
Outlier recovery phase transitions plots for models with missing data (white regions \leftrightarrow successful recovery).

